Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Med Act Plants ; 12(1): 1-17, 2023 Mar.
Article En | MEDLINE | ID: mdl-38234988

The search for alternative naturally occurring antimicrobial agents will always continue, especially when emerging diseases like COVID-19 provide an urgency to identify and develop safe and effective ways to prevent or treat these infections. The purpose of this study was to evaluate the potential antimicrobial activity as well as antioxidant properties of commercial samples from four traditional medicinal plants used in Central America: Theobroma cacao, Bourreria huanita, Eriobotrya japonica, and Elettaria cardamomum. Ethanolic extracts were prepared from commercial products derived from the seeds or flowers of these plants. Total phenolics and antioxidant activity were assessed using commercial kits. The cytotoxicity and antiviral activity against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) were evaluated using the XTT colorimetric assay and a SARS-CoV-2 delta pseudoviral model. The half-maximal cytotoxic concentration (CC50) and half-maximal effective concentration (EC50) were used to calculate the therapeutic index (TI). Additionally, the antibacterial activity against Escherichia coli and Staphylococcus epidermidis was tested using a spectrophotometric method. The extracts showed total phenolics in the range of 0.06 to 1.85 nM/µL catechin equivalents, with T. cacao bean extract showing the highest content. The antioxidant activity showed values between 0.02 and 0.44 mM Trolox equivalents. T. cacao bean extract showed the highest antioxidant activity. Most plant extracts showed zero to moderate selective antiviral activity; however, one T. cacao beans sample showed excellent antiviral activity against SARS-CoV-2 with a TI value of 30.3, and one sample of E. japonica showed selective antiviral activity with a TI value of 18.7. Significant inhibition of E. coli and S. epidermidis by an E. japonica ethanolic extract (p<0.001) was observed using a spectrophotometric method that monitors bacterial growth over time. Additionally, ethanolic extracts of E. cardamomum showed significant inhibition of S. epidermidis growth (p<0.001). The results warrant further investigation of the antimicrobial and antioxidant properties of these plant extracts.

2.
PLoS One ; 17(1): e0261775, 2022.
Article En | MEDLINE | ID: mdl-35051209

HIV pre-exposure prophylaxis (PrEP) is dominated by clinical therapeutic antiretroviral (ARV) drugs. Griffithsin (GRFT) is a non-ARV lectin with potent anti-HIV activity. GRFT's preclinical safety, lack of systemic absorption after vaginal administration in animal studies, and lack of cross-resistance with existing ARV drugs prompted its development for topical HIV PrEP. We investigated safety, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of PC-6500 (0.1% GRFT in a carrageenan (CG) gel) in healthy women after vaginal administration. This randomized, placebo-controlled, parallel group, double-blind first-in-human phase 1 study enrolled healthy, HIV-negative, non-pregnant women aged 24-45 years. In the open label period, all participants (n = 7) received single dose of PC-6500. In the randomized period, participants (n = 13) were instructed to self-administer 14 doses of PC-6500 or its matching CG placebo (PC-535) once daily for 14 days. The primary outcomes were safety and PK after single dose, and then after 14 days of dosing. Exploratory outcomes were GRFT concentrations in cervicovaginal fluids, PD, inflammatory mediators and gene expression in ectocervical biopsies. This trial is registered with ClinicalTrials.gov, number NCT02875119. No significant adverse events were recorded in clinical or laboratory results or histopathological evaluations in cervicovaginal mucosa, and no anti-drug (GRFT) antibodies were detected in serum. No cervicovaginal proinflammatory responses and no changes in the ectocervical transcriptome were evident. Decreased levels of proinflammatory chemokines (CXCL8, CCL5 and CCL20) were observed. GRFT was not detected in plasma. GRFT and GRFT/CG in cervicovaginal lavage samples inhibited HIV and HPV, respectively, in vitro in a dose-dependent fashion. These data suggest GRFT formulated in a CG gel is a safe and promising on-demand multipurpose prevention technology product that warrants further investigation.


Carrageenan/administration & dosage , HIV Infections/prevention & control , Papillomavirus Infections/prevention & control , Plant Lectins/administration & dosage , Pre-Exposure Prophylaxis , Vaginal Creams, Foams, and Jellies/administration & dosage , Administration, Intravaginal , Adolescent , Adult , Double-Blind Method , Female , HIV-1 , Humans , Middle Aged , Papillomaviridae
3.
S Afr J Bot ; 146: 735-739, 2022 May.
Article En | MEDLINE | ID: mdl-34955582

Plant-based compounds with antiviral properties against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified in Aframomum melegueta through computational models. The seed extract have been traditionally used to treat different illnesses. In this study, ethanolic extracts were prepared for six commercial samples of A. melegueta seeds. Antiviral activity was tested using the XTT cytotoxicity assay and cell-based SARS-CoV-1 and 2 pseudoviral models. The presence of gingerols and other non-volatile components in the seed extracts was determined using an Agilent 1290 UPLC/DAD in tandem with an Agilent 6546 QTOF-MS. Our results showed selective antiviral activity with TI values as high as 13.1. Fifteen gingerols were identified by chromatographic analysis, with 6-gingerol being the dominant component in each seed extract. A combination of 6-gingerol with techtochrysin, previously identified in computational models as a potential active ingredient against SARS-CoV-2, demonstrated additive antiviral activity with CI values between 0.8715 and 0.9426. We confirmed the antiviral activity of A. melegueta predicted through computational models and identified a different compound, 6-gingerol, as a potential active ingredient.

4.
Mar Drugs ; 19(8)2021 Jul 26.
Article En | MEDLINE | ID: mdl-34436255

Over 182 million confirmed cases of COVID-19 and more than 4 million deaths have been reported to date around the world. It is essential to identify broad-spectrum antiviral agents that may prevent or treat infections by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but also by other coronaviruses that may jump the species barrier in the future. We evaluated the antiviral selectivity of griffithsin and sulfated and non-sulfated polysaccharides against SARS-CoV-1 and SARS-CoV-2 using a cytotoxicity assay and a cell-based pseudoviral model. The half-maximal cytotoxic concentration (CC50) and half-maximal effective concentration (EC50) were determined for each compound, using a dose-response-inhibition analysis on GraphPad Prism v9.0.2 software (San Diego, CA, USA). The therapeutic index (TI = CC50/EC50) was calculated for each compound. The potential synergistic, additive, or antagonistic effect of different compound combinations was determined by CalcuSyn v1 software (Biosoft, Cambridge, UK), which estimated the combination index (CI) values. Iota and lambda carrageenan showed the most potent antiviral activity (EC50 between 3.2 and 7.5 µg/mL). Carrageenan and griffithsin combinations exhibited synergistic activity (EC50 between 0.2 and 3.8 µg/mL; combination index <1), including against recent SARS-CoV-2 mutations. The griffithsin and carrageenan combination is a promising candidate to prevent or treat infections by SARS-CoV-1 and SARS-CoV-2.


Antiviral Agents/pharmacology , Carrageenan/pharmacology , Plant Lectins/pharmacology , SARS-CoV-2/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , COVID-19/virology , Drug Synergism , HeLa Cells , Humans , Models, Biological , Polysaccharides/pharmacology , COVID-19 Drug Treatment
...