Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321119

RESUMEN

Synaptotagmin-1 (Syt1) is a presynaptic calcium sensor with two calcium binding domains, C2A and C2B, that triggers action potential-induced synchronous neurotransmitter release, while suppressing asynchronous and spontaneous release. We identified a de novo missense mutation (P401L) in the C2B domain in a patient with developmental delay and autistic symptoms. Expressing the orthologous mouse mutant (P400L) in cultured Syt1 null mutant neurons revealed a reduction in dendrite outgrowth with a proportional reduction in synapses. This was not observed in single Syt1PL-rescued neurons that received normal synaptic input when cultured in a control network. Patch-clamp recordings showed that spontaneous miniature release events per synapse were increased more than 500% in Syt1PL-rescued neurons, even beyond the increased rates in Syt1 KO neurons. Furthermore, action potential-induced asynchronous release was increased more than 100%, while synchronous release was unaffected. A similar shift to more asynchronous release was observed during train stimulations. These cellular phenotypes were also observed when Syt1PL was overexpressed in wild type neurons. Our findings show that Syt1PL desynchronizes neurotransmission by increasing the readily releasable pool for asynchronous release and reducing the suppression of spontaneous and asynchronous release. Neurons respond to this by shortening their dendrites, possibly to counteract the increased synaptic input. Syt1PL acts in a dominant-negative manner supporting a causative role for the mutation in the heterozygous patient. We propose that the substitution of a rigid proline to a more flexible leucine at the bottom of the C2B domain impairs clamping of release by interfering with Syt1's primary interface with the SNARE complex. This is a novel cellular phenotype, distinct from what was previously found for other SYT1 disease variants, and points to a role for spontaneous and asynchronous release in SYT1-associated neurodevelopmental disorder.

2.
Genes (Basel) ; 13(2)2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205434

RESUMEN

Pharmacological options for neurodevelopmental disorders are limited to symptom suppressing agents that do not target underlying pathophysiological mechanisms. Studies on specific genetic disorders causing neurodevelopmental disorders have elucidated pathophysiological mechanisms to develop more rational treatments. Here, we present our concerted multi-level strategy 'BRAINMODEL', focusing on excitation/inhibition ratio homeostasis across different levels of neuroscientific interrogation. The aim is to develop personalized treatment strategies by linking iPSC-based models and novel EEG measurements to patient report outcome measures in individual patients. We focus our strategy on chromatin- and SNAREopathies as examples of severe genetic neurodevelopmental disorders with an unmet need for rational interventions.


Asunto(s)
Células Madre Pluripotentes Inducidas , Trastornos del Neurodesarrollo , Electroencefalografía , Homeostasis , Humanos , Trastornos del Neurodesarrollo/genética , Sinapsis/genética
3.
J Neurosci ; 40(13): 2606-2617, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098902

RESUMEN

Regulated secretion is controlled by Ca2+ sensors with different affinities and subcellular distributions. Inactivation of Syt1 (synaptotagmin-1), the main Ca2+ sensor for synchronous neurotransmission in many neurons, enhances asynchronous and spontaneous release rates, suggesting that Syt1 inhibits other sensors with higher Ca2+ affinities and/or lower cooperativities. Such sensors could include Doc2a and Doc2b, which have been implicated in spontaneous and asynchronous neurotransmitter release and compete with Syt1 for binding SNARE complexes. Here, we tested this hypothesis using triple-knock-out mice. Inactivation of Doc2a and Doc2b in Syt1-deficient neurons did not reduce the high spontaneous release rate. Overexpression of Doc2b variants in triple-knock-out neurons reduced spontaneous release but did not rescue synchronous release. A chimeric construct in which the C2AB domain of Syt1 was substituted by that of Doc2b did not support synchronous release either. Conversely, the soluble C2AB domain of Syt1 did not affect spontaneous release. We conclude that the high spontaneous release rate in synaptotagmin-deficient neurons does not involve the binding of Doc2 proteins to Syt1 binding sites in the SNARE complex. Instead, our results suggest that the C2AB domains of Syt1 and Doc2b specifically support synchronous and spontaneous release by separate mechanisms. (Both male and female neurons were studied without sex determination.)SIGNIFICANCE STATEMENT Neurotransmission in the brain is regulated by presynaptic Ca2+ concentrations. Multiple Ca2+ sensor proteins contribute to synchronous (Syt1, Syt2), asynchronous (Syt7), and spontaneous (Doc2a/Doc2b) phases of neurotransmitter release. Genetic ablation of synchronous release was previously shown to affect other release phases, suggesting that multiple sensors may compete for similar release sites, together encoding stimulus-secretion coupling over a large range of synaptic Ca2+ concentrations. Here, we investigated the extent of functional overlap between Syt1, Doc2a, and Doc2b by reintroducing wild-type and mutant proteins in triple-knock-out neurons, and conclude that the sensors are highly specialized for different phases of release.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Sinaptotagmina I/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Transmisión Sináptica/fisiología , Sinaptotagmina I/genética
4.
Sci Rep ; 9(1): 17642, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31754209

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 9(1): 11341, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383906

RESUMEN

To support frequency-coded information transfer, mammalian synapses tightly synchronize neurotransmitter release to action potentials (APs). However, release desynchronizes during AP trains, especially at room temperature. Here we show that suppression of asynchronous release by Synaptotagmin-1 (Syt1), but not release triggering, is highly temperature sensitive, and enhances synchronous release during high-frequency stimulation. In Syt1-deficient synapses, asynchronous release increased with temperature, opposite to wildtype synapses. Mutations in Syt1 C2B-domain polybasic stretch (Syt1 K326Q,K327Q,K331Q) did not affect synchronization during sustained activity, while the previously observed reduced synchronous response to a single AP was confirmed. However, an inflexible linker between the C2-domains (Syt1 9Pro) reduced suppression, without affecting synchronous release upon a single AP. Syt1 9Pro expressing synapses showed impaired synchronization during AP trains, which was rescued by buffering global Ca2+ to prevent asynchronous release. Hence, frequency coding relies on Syt1's temperature sensitive suppression of asynchronous release, an aspect distinct from its known vesicle recruitment and triggering functions.


Asunto(s)
Neuronas/metabolismo , Sinapsis/metabolismo , Sinaptotagmina I/metabolismo , Potenciales de Acción , Animales , Calcio/metabolismo , Células Cultivadas , Femenino , Eliminación de Gen , Calor , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Mutación Puntual , Sinapsis/genética , Sinaptotagmina I/genética
6.
Neuron ; 103(2): 217-234.e4, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31171447

RESUMEN

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).


Asunto(s)
Encéfalo/citología , Ontología de Genes , Proteómica , Programas Informáticos , Sinapsis/fisiología , Animales , Encéfalo/fisiología , Bases de Datos Genéticas , Humanos , Bases del Conocimiento , Potenciales Sinápticos/fisiología , Sinaptosomas
7.
Cell Rep ; 27(7): 2199-2211.e6, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091456

RESUMEN

Synaptic dysfunction is associated with many brain disorders, but robust human cell models to study synaptic transmission and plasticity are lacking. Instead, current in vitro studies on human neurons typically rely on spontaneous synaptic events as a proxy for synapse function. Here, we describe a standardized in vitro approach using human neurons cultured individually on glia microdot arrays that allow single-cell analysis of synapse formation and function. We show that single glutamatergic or GABAergic forebrain neurons differentiated from human induced pluripotent stem cells form mature synapses that exhibit robust evoked synaptic transmission. These neurons show plasticity features such as synaptic facilitation, depression, and recovery. Finally, we show that spontaneous events are a poor predictor of synaptic maturity and do not correlate with the robustness of evoked responses. This methodology can be deployed directly to evaluate disease models for synaptic dysfunction and can be leveraged for drug development and precision medicine.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neurogénesis/genética , Plasticidad Neuronal/fisiología , Análisis de la Célula Individual/métodos , Transmisión Sináptica/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Neuronas GABAérgicas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/fisiología , Ratas , Sinapsis/fisiología
8.
Hum Mol Genet ; 27(11): 1879-1891, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635364

RESUMEN

The MIR137 locus is a replicated genetic risk factor for schizophrenia. The risk-associated allele is reported to increase miR-137 expression and miR-137 overexpression alters synaptic transmission in mouse hippocampus. We investigated the cellular mechanisms underlying these observed effects in mouse hippocampal neurons in culture. First, we correlated the risk allele to expression of the genes in the MIR137 locus in human postmortem brain. Some evidence for increased MIR137HG expression was observed, especially in hippocampus of the disease-associated genotype. Second, in mouse hippocampal neurons, we confirmed previously observed changes in synaptic transmission upon miR-137 overexpression. Evoked synaptic transmission and spontaneous release were 50% reduced. We identified defects in release probability as the underlying cause. In contrast to previous observations, no evidence was obtained for selective synaptic vesicle docking defects. Instead, ultrastructural morphometry revealed multiple effects of miR-137 overexpression on docking, active zone length and total vesicle number. Moreover, proteomic analyses of neuronal protein showed that expression of Syt1 and Cplx1, previously reported as downregulated upon miR-137 overexpression, was unaltered. Immunocytochemistry of synapses overexpressing miR-137 showed normal Synaptotagmin1 and Complexin1 protein levels. Instead, our proteomic analyses revealed altered expression of genes involved in synaptogenesis. Concomitantly, synaptogenesis assays revealed 31% reduction in synapse formation. Taken together, these data show that miR-137 regulates synaptic function by regulating synaptogenesis, synaptic ultrastructure and synapse function. These effects are plausible contributors to the increased schizophrenia risk associated with miR-137 overexpression.


Asunto(s)
MicroARNs/genética , Proteómica , Esquizofrenia/genética , Animales , Autopsia , Exocitosis/genética , Regulación del Desarrollo de la Expresión Génica , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Humanos , Ratones , Neuronas/patología , Esquizofrenia/fisiopatología , Sinapsis/genética , Transmisión Sináptica/genética , Vesículas Sinápticas/genética
9.
Brain ; 141(5): 1350-1374, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29538625

RESUMEN

De novo heterozygous mutations in STXBP1/Munc18-1 cause early infantile epileptic encephalopathies (EIEE4, OMIM #612164) characterized by infantile epilepsy, developmental delay, intellectual disability, and can include autistic features. We characterized the cellular deficits for an allelic series of seven STXBP1 mutations and developed four mouse models that recapitulate the abnormal EEG activity and cognitive aspects of human STXBP1-encephalopathy. Disease-causing STXBP1 variants supported synaptic transmission to a variable extent on a null background, but had no effect when overexpressed on a heterozygous background. All disease variants had severely decreased protein levels. Together, these cellular studies suggest that impaired protein stability and STXBP1 haploinsufficiency explain STXBP1-encephalopathy and that, therefore, Stxbp1+/- mice provide a valid mouse model. Simultaneous video and EEG recordings revealed that Stxbp1+/- mice with different genomic backgrounds recapitulate the seizure/spasm phenotype observed in humans, characterized by myoclonic jerks and spike-wave discharges that were suppressed by the antiepileptic drug levetiracetam. Mice heterozygous for Stxbp1 in GABAergic neurons only, showed impaired viability, 50% died within 2-3 weeks, and the rest showed stronger epileptic activity. c-Fos staining implicated neocortical areas, but not other brain regions, as the seizure foci. Stxbp1+/- mice showed impaired cognitive performance, hyperactivity and anxiety-like behaviour, without altered social behaviour. Taken together, these data demonstrate the construct, face and predictive validity of Stxbp1+/- mice and point to protein instability, haploinsufficiency and imbalanced excitation in neocortex, as the underlying mechanism of STXBP1-encephalopathy. The mouse models reported here are valid models for development of therapeutic interventions targeting STXBP1-encephalopathy.


Asunto(s)
Encefalopatías/complicaciones , Encefalopatías/genética , Epilepsia/fisiopatología , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Proteínas Munc18/genética , Animales , Anticonvulsivantes/uso terapéutico , Encefalopatías/tratamiento farmacológico , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Discapacidad Intelectual/complicaciones , Levetiracetam/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
10.
Nat Commun ; 8: 15915, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28635948

RESUMEN

Synaptic transmission requires a stable pool of release-ready (primed) vesicles. Here we show that two molecules involved in SNARE-complex assembly, Munc13-1 and Munc18-1, together stabilize release-ready vesicles by preventing de-priming. Replacing neuronal Munc18-1 by a non-neuronal isoform Munc18-2 (Munc18-1/2SWAP) supports activity-dependent priming, but primed vesicles fall back into a non-releasable state (de-prime) within seconds. Munc13-1 deficiency produces a similar defect. Inhibitors of N-ethylmaleimide sensitive factor (NSF), N-ethylmaleimide (NEM) or interfering peptides, prevent de-priming in munc18-1/2SWAP or munc13-1 null synapses, but not in CAPS-1/2 null, another priming-deficient mutant. NEM rescues synaptic transmission in munc13-1 null and munc18-1/2SWAP synapses, in acute munc13-1 null slices and even partially in munc13-1/2 double null synapses. Together these data indicate that Munc13-1 and Munc18-1, but not CAPS-1/2, stabilize primed synaptic vesicles by preventing NSF-dependent de-priming.


Asunto(s)
Proteínas Munc18/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Proteínas Munc18/genética , Proteínas Sensibles a N-Etilmaleimida/genética , Proteínas del Tejido Nervioso/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/genética
11.
J Proteome Res ; 13(9): 3871-80, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25102230

RESUMEN

A challenge in proteomics is that many observations are missing with the probability of missingness increasing as abundance decreases. Adjusting for this informative missingness is required to assess accurately which proteins are differentially abundant. We propose an empirical Bayesian random censoring threshold (EBRCT) model that takes the pattern of missingness in account in the identification of differential abundance. We compare our model with four alternatives, one that considers the missing values as missing completely at random (MCAR model), one with a fixed censoring threshold for each protein species (fixed censoring model) and two imputation models, k-nearest neighbors (IKNN) and singular value thresholding (SVTI). We demonstrate that the EBRCT model bests all alternative models when applied to the CPTAC study 6 benchmark data set. The model is applicable to any label-free peptide or protein quantification pipeline and is provided as an R script.


Asunto(s)
Teorema de Bayes , Modelos Estadísticos , Proteómica/métodos , Espectrometría de Masas , Proteínas/análisis , Proteínas/química , Curva ROC
12.
PLoS Comput Biol ; 8(4): e1002450, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496630

RESUMEN

Activity regulated neurotransmission shapes the computational properties of a neuron and involves the concerted action of many proteins. Classical, intuitive working models often assign specific proteins to specific steps in such complex cellular processes, whereas modern systems theories emphasize more integrated functions of proteins. To test how often synaptic proteins participate in multiple steps in neurotransmission we present a novel probabilistic method to analyze complex functional data from genetic perturbation studies on neuronal secretion. Our method uses a mixture of probabilistic principal component analyzers to cluster genetic perturbations on two distinct steps in synaptic secretion, vesicle priming and fusion, and accounts for the poor standardization between different studies. Clustering data from 121 perturbations revealed that different perturbations of a given protein are often assigned to different steps in the release process. Furthermore, vesicle priming and fusion are inversely correlated for most of those perturbations where a specific protein domain was mutated to create a gain-of-function variant. Finally, two different modes of vesicle release, spontaneous and action potential evoked release, were affected similarly by most perturbations. This data suggests that the presynaptic protein network has evolved as a highly integrated supramolecular machine, which is responsible for both spontaneous and activity induced release, with a group of core proteins using different domains to act on multiple steps in the release process.


Asunto(s)
Modelos Neurológicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Simulación por Computador , Humanos
13.
J Neurosci Methods ; 195(2): 185-93, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21167201

RESUMEN

The shape, structure and connectivity of nerve cells are important aspects of neuronal function. Genetic and epigenetic factors that alter neuronal morphology or synaptic localization of pre- and post-synaptic proteins contribute significantly to neuronal output and may underlie clinical states. To assess the impact of individual genes and disease-causing mutations on neuronal morphology, reliable methods are needed. Unfortunately, manual analysis of immuno-fluorescence images of neurons to quantify neuronal shape and synapse number, size and distribution is labor-intensive, time-consuming and subject to human bias and error. We have developed an automated image analysis routine using steerable filters and deconvolutions to automatically analyze dendrite and synapse characteristics in immuno-fluorescence images. Our approach reports dendrite morphology, synapse size and number but also synaptic vesicle density and synaptic accumulation of proteins as a function of distance from the soma as consistent as expert observers while reducing analysis time considerably. In addition, the routine can be used to detect and quantify a wide range of neuronal organelles and is capable of batch analysis of a large number of images enabling high-throughput analysis.


Asunto(s)
Procesamiento Automatizado de Datos/métodos , Neuronas/citología , Neuronas/fisiología , Programas Informáticos , Sinapsis/fisiología , Animales , Células Cultivadas , Dendritas/metabolismo , Diagnóstico por Imagen , Homólogo 4 de la Proteína Discs Large , Guanilato-Quinasas , Hipocampo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Mutantes , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Munc18/genética , Neuritas/metabolismo , Neuropéptido Y/metabolismo , Receptores de Transferrina/metabolismo , Vesículas Sinápticas/metabolismo , Factores de Tiempo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
14.
Science ; 327(5973): 1614-8, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20150444

RESUMEN

Synaptic vesicle fusion in brain synapses occurs in phases that are either tightly coupled to action potentials (synchronous), immediately following action potentials (asynchronous), or as stochastic events in the absence of action potentials (spontaneous). Synaptotagmin-1, -2, and -9 are vesicle-associated Ca2+ sensors for synchronous release. Here we found that double C2 domain (Doc2) proteins act as Ca2+ sensors to trigger spontaneous release. Although Doc2 proteins are cytosolic, they function analogously to synaptotagmin-1 but with a higher Ca2+ sensitivity. Doc2 proteins bound to N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complexes in competition with synaptotagmin-1. Thus, different classes of multiple C2 domain-containing molecules trigger synchronous versus spontaneous fusion, which suggests a general mechanism for synaptic vesicle fusion triggered by the combined actions of SNAREs and multiple C2 domain-containing proteins.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/fisiología , Potenciales de Acción , Animales , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Células Cultivadas , Potenciales Postsinápticos Excitadores , Hipocampo/citología , Potenciales Postsinápticos Inhibidores , Fusión de Membrana , Ratones , Ratones Noqueados , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Células de Purkinje/fisiología , Ratas , Proteínas SNARE/metabolismo , Sinaptotagmina I/metabolismo
15.
Am J Hum Genet ; 86(2): 113-25, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20060087

RESUMEN

Although cognitive ability is a highly heritable complex trait, only a few genes have been identified, explaining relatively low proportions of the observed trait variation. This implies that hundreds of genes of small effect may be of importance for cognitive ability. We applied an innovative method in which we tested for the effect of groups of genes defined according to cellular function (functional gene group analysis). Using an initial sample of 627 subjects, this functional gene group analysis detected that synaptic heterotrimeric guanine nucleotide binding proteins (G proteins) play an important role in cognitive ability (P(EMP) = 1.9 x 10(-4)). The association with heterotrimeric G proteins was validated in an independent population sample of 1507 subjects. Heterotrimeric G proteins are central relay factors between the activation of plasma membrane receptors by extracellular ligands and the cellular responses that these induce, and they can be considered a point of convergence, or a "signaling bottleneck." Although alterations in synaptic signaling processes may not be the exclusive explanation for the association of heterotrimeric G proteins with cognitive ability, such alterations may prominently affect the properties of neuronal networks in the brain in such a manner that impaired cognitive ability and lower intelligence are observed. The reported association of synaptic heterotrimeric G proteins with cognitive ability clearly points to a new direction in the study of the genetic basis of cognitive ability.


Asunto(s)
Cognición , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Sinapsis/genética , Sinapsis/metabolismo , Adolescente , Adulto , Trastorno por Déficit de Atención con Hiperactividad/genética , Niño , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Pruebas de Inteligencia , Masculino , Polimorfismo de Nucleótido Simple/genética , Control de Calidad , Reproducibilidad de los Resultados , Adulto Joven
16.
J Neurosci Methods ; 178(2): 378-84, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19146878

RESUMEN

Cellular traffic is a central aspect of cell function in health and disease. It is highly dynamic, and can be investigated at increasingly finer temporal and spatial resolution due to new imaging techniques and probes. Manual tracking of these data is labor-intensive and observer-biased and existing automation is only semi-automatic and requires near-perfect object detection and high-contrast images. Here, we describe a novel automated technique for quantifying cellular traffic. Using local intrinsic information from adjacent images in a sequence and a model for object characteristics, our approach detects and tracks multiple objects in living cells via Multiple Hypothesis Tracking and handles several confounds (merge/split, birth/death, and clutters), as reliable as expert observers. By replacing the related component (e.g. using a different appearance model) the method can be easily adapted for quantitative analysis of other biological samples.


Asunto(s)
Astrocitos/metabolismo , Neuronas/metabolismo , Algoritmos , Animales , Automatización , Teorema de Bayes , Transporte Biológico , Encéfalo/metabolismo , Línea Celular , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Humanos , Ratones , Neuropéptido Y/metabolismo , Orgánulos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Programas Informáticos , Transducción Genética , Transfección
17.
J Neurosci Methods ; 173(1): 83-90, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18577400

RESUMEN

Neuroendocrine cells like chromaffin cells and PC-12 cells are established models for transport, docking and secretion of secretory vesicles. In micrographs, these vesicles are recognized by their electron dense core. The analysis of secretory vesicle distribution is usually performed manually, which is labour-intensive and subject to human bias and error. We have developed an algorithm to analyze secretory vesicle distribution and docking in electron micrographs. Our algorithm automatically detects the vesicles and calculates their distance to the plasma membrane on basis of the pixel coordinates, ensuring that all vesicles are counted and the shortest distance is measured. We validated the algorithm on a several preparations of endocrine cells. The algorithm was highly accurate in recognizing secretory vesicles and calculating their distribution including vesicle-docking analysis. Furthermore, the algorithm enabled the extraction of parameters that cannot be measured manually like vesicle clustering. Taking together, the algorithm facilitates and expands the unbiased and efficient analysis of secretory vesicle distribution and docking.


Asunto(s)
Células Cromafines/ultraestructura , Procesamiento Automatizado de Datos/métodos , Vesículas Secretoras/fisiología , Vesículas Secretoras/ultraestructura , Algoritmos , Animales , Células Cultivadas , Células Cromafines/metabolismo , Embrión de Mamíferos , Ratones , Microscopía Electrónica de Transmisión/métodos , Reproducibilidad de los Resultados
18.
PLoS One ; 2(10): e1073, 2007 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17957255

RESUMEN

Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity.


Asunto(s)
Señalización del Calcio , Espinas Dendríticas/patología , Potenciales de Acción , Animales , Encéfalo/metabolismo , Calcio/química , Calmodulina/química , Cinética , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente/métodos , Modelos Biológicos , Modelos Teóricos , Fotones , Sinapsis/patología
19.
Proc Natl Acad Sci U S A ; 103(48): 18332-7, 2006 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17110441

RESUMEN

Prompt recovery after intense activity is an essential feature of most mammalian synapses. Here we show that synapses with reduced expression of the presynaptic gene munc18-1 suffer from increased depression during intense stimulation at glutamatergic, GABAergic, and neuromuscular synapses. Conversely, munc18-1 overexpression makes these synapses recover faster. Concomitant changes in the readily releasable vesicle pool and its refill kinetics were found. The number of vesicles docked at the active zone and the total number of vesicles per terminal correlated with both munc18-1 expression levels and the size of the releasable vesicle pool. These data show that varying expression of a single gene controls synaptic recovery by modulating the number of docked, release-ready vesicles and thereby replenishment of the secretion capacity.


Asunto(s)
Proteínas Munc18/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Regulación de la Expresión Génica , Heterocigoto , Ratones , Ratones Transgénicos , Microscopía Electrónica , Proteínas Munc18/genética , Transmisión Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestructura , Factores de Tiempo
20.
PLoS One ; 1: e126, 2006 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-17205130

RESUMEN

Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones.


Asunto(s)
Células Cromafines/fisiología , Proteínas Qa-SNARE/fisiología , Vesículas Secretoras/fisiología , Animales , Toxinas Botulínicas/genética , Células Cultivadas , Células Cromafines/ultraestructura , Expresión Génica , Marcación de Gen , Proteínas Fluorescentes Verdes/genética , Fusión de Membrana/fisiología , Ratones , Microscopía Electrónica de Transmisión , Proteínas Munc18/fisiología , Proteínas Qa-SNARE/deficiencia , Proteínas Qa-SNARE/genética , Vesículas Secretoras/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...