Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861413

RESUMEN

The implementation of a new genomic assembly pipeline named only the best (otb) has effectively addressed various challenges associated with data management during the development and storage of genome assemblies. otb, which incorporates a comprehensive pipeline involving a setup layer, quality checks, templating, and the integration of Nextflow and Singularity. The primary objective of otb is to streamline the process of creating a HiFi/HiC genome, aiming to minimize the manual intervention required in the genome assembly process. The Two-lined spittlebug, (Prosapia bicincta, Hemiptera: Cercopidae), a true bug insect herbivore, serves as a practical test case for evaluating otb. The two-lined spittlebug is both a crucial agricultural pest and a genomically understudied insect belonging to the order Hemiptera. This insect is a significant threat to grasslands and pastures, leading to plant wilting and phytotoxemia when infested. Its presence in tropical and subtropical regions around the world poses a long-term threat to the composition of plant communities in grassland landscapes, impacting rangelands, and posing a substantial risk to cattle production.

2.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301265

RESUMEN

The West Indian fruit fly, Anastrepha obliqua, is a major pest of mango in Central and South America and attacks more than 60 species of host fruits. To support current genetic and genomic research on A. obliqua, we sequenced the genome using high-fidelity long-read sequencing. This resulted in a highly contiguous contig assembly with 90% of the genome in 10 contigs. The contig assembly was placed in a chromosomal context using synteny with a closely related species, Anastrepha ludens, as both are members of the Anastrepha fraterculus group. The resulting assembly represents the five autosomes and the X chromosome which represents 95.9% of the genome, and 199 unplaced contigs representing the remaining 4.1%. Orthology analysis across the structural annotation sets of high quality tephritid genomes demonstrates the gene annotations are robust, and identified genes unique to Anastrepha species that may help define their pestiferous nature that can be used as a starting point for comparative genomics. This genome assembly represents the first of this species and will serve as a foundation for future genetic and genomic research in support of its management as an agricultural pest.


Asunto(s)
Tephritidae , Animales , Tephritidae/genética , Especificidad de la Especie , Drosophila , Frutas , Cromosoma X
3.
Genes (Basel) ; 14(8)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37628597

RESUMEN

The evolution of endosymbionts and their hosts can lead to highly dynamic interactions with varying fitness effects for both the endosymbiont and host species. Wolbachia, a ubiquitous endosymbiont of arthropods and nematodes, can have both beneficial and detrimental effects on host fitness. We documented the occurrence and patterns of transmission of Wolbachia within the Hawaiian Drosophilidae and examined the potential contributions of Wolbachia to the rapid diversification of their hosts. Screens for Wolbachia infections across a minimum of 140 species of Hawaiian Drosophila and Scaptomyza revealed species-level infections of 20.0%, and across all 399 samples, a general infection rate of 10.3%. Among the 44 Wolbachia strains we identified using a modified Wolbachia multi-locus strain typing scheme, 30 (68.18%) belonged to supergroup B, five (11.36%) belonged to supergroup A, and nine (20.45%) had alleles with conflicting supergroup assignments. Co-phylogenetic reconciliation analysis indicated that Wolbachia strain diversity within their endemic Hawaiian Drosophilidae hosts can be explained by vertical (e.g., co-speciation) and horizontal (e.g., host switch) modes of transmission. Results from stochastic character trait mapping suggest that horizontal transmission is associated with the preferred oviposition substrate of the host, but not the host's plant family or island of occurrence. For Hawaiian Drosophilid species of conservation concern, with 13 species listed as endangered and 1 listed as threatened, knowledge of Wolbachia strain types, infection status, and potential for superinfection could assist with conservation breeding programs designed to bolster population sizes, especially when wild populations are supplemented with laboratory-reared, translocated individuals. Future research aimed at improving the understanding of the mechanisms of Wolbachia transmission in nature, their impact on the host, and their role in host species formation may shed light on the influence of Wolbachia as an evolutionary driver, especially in Hawaiian ecosystems.


Asunto(s)
Ecosistema , Wolbachia , Femenino , Animales , Hawaii , Filogenia , Wolbachia/genética , Drosophila/genética
4.
J Econ Entomol ; 115(6): 2110-2115, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36263914

RESUMEN

Tephritid fruit flies are among the most invasive and destructive agricultural pests worldwide. Over recent years, many studies have implemented the CRISPR/Cas9 genome-editing technology to dissect gene functions in tephritids and create new strains to facilitate their genetics, management, and control. This growing literature allows us to compare diverse strategies for delivering CRISPR/Cas9 components into tephritid embryos, optimize procedures, and advance the technology to systems outside the most thoroughly studied species within the family. Here, we revisit five years of CRISPR research in Tephritidae and propose a unified protocol for candidate gene knockout in fruit flies using CRISPR/Cas9. We demonstrated the efficiency of our protocol by disrupting the eye pigmentation gene white eye (we) in the melon fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). High rates of somatic and germline mutagenesis were induced by microinjecting pre-assembled Cas9-sgRNA complexes through the chorion of embryos at early embryogenesis, leading to the rapid development of new mutant lines. We achieved comparable results when targeting the we orthologue in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), illustrating the reliability of our methods when transferred to other related species. Finally, we functionally validated the recently discovered white pupae (wp) loci in the melon fly, successfully recreating the white puparium phenotype used in suppression programs of this and other major economically important tephritids. This is the first demonstration of CRISPR-based genome-editing in the genus Zeugodacus, and we anticipate that the procedures described here will contribute to advancing genome-editing in other non-model tephritid fruit flies.


Asunto(s)
Cucurbitaceae , Tephritidae , Animales , Técnicas de Inactivación de Genes , Sistemas CRISPR-Cas , Reproducibilidad de los Resultados , Tephritidae/genética , Drosophila/genética , Fenotipo , Recreación
5.
BMC Genomics ; 23(1): 157, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193521

RESUMEN

BACKGROUND: Pacific Biosciences HiFi read technology is currently the industry standard for high accuracy long-read sequencing that has been widely adopted by large sequencing and assembly initiatives for generation of de novo assemblies in non-model organisms. Though adapter contamination filtering is routine in traditional short-read analysis pipelines, it has not been widely adopted for HiFi workflows. RESULTS: Analysis of 55 publicly available HiFi datasets revealed that a read-sanitation step to remove sequence artifacts derived from PacBio library preparation from read pools is necessary as adapter sequences can be erroneously integrated into assemblies. CONCLUSIONS: Here we describe the nature of adapter contaminated reads, their consequences in assembly, and present HiFiAdapterFilt, a simple and memory efficient solution for removing adapter contaminated reads prior to assembly.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Biblioteca de Genes , Análisis de Secuencia de ADN
6.
Insects ; 12(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34357286

RESUMEN

The phylum Arthropoda includes species crucial for ecosystem stability, soil health, crop production, and others that present obstacles to crop and animal agriculture. The United States Department of Agriculture's Agricultural Research Service initiated the Ag100Pest Initiative to generate reference genome assemblies of arthropods that are (or may become) pests to agricultural production and global food security. We describe the project goals, process, status, and future. The first three years of the project were focused on species selection, specimen collection, and the construction of lab and bioinformatics pipelines for the efficient production of assemblies at scale. Contig-level assemblies of 47 species are presented, all of which were generated from single specimens. Lessons learned and optimizations leading to the current pipeline are discussed. The project name implies a target of 100 species, but the efficiencies gained during the project have supported an expansion of the original goal and a total of 158 species are currently in the pipeline. We anticipate that the processes described in the paper will help other arthropod research groups or other consortia considering genome assembly at scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...