Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Exp Rheumatol ; 37(2): 208-214, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30148445

RESUMEN

OBJECTIVES: The immune system has an important role in the development of systemic lupus erythematosus (SLE) and chronic periodontitis (CP). Altered cytokines levels characterise both diseases and contributes to periodontal tissue damage in CP and to macrocomplexes deposition with connective tissue destruction in SLE. This study aimed to evaluate the production of salivary cytokines in patients with SLE and its association with periodontal status. METHODS: The sample comprised 70 SLE patients and 70 paired controls. SLE activity and damage were scored using Systemic Lupus Erythematosus Disease Activity Index 2000 and Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index. Subjects were classified as without or with CP. Salivary concentrations of IL-33, MMP2/TIMP2, RANK and OPG were measured by ELISA, while IL-2, IFNγ, TNFα, IL-4, IL-6, IL-10 and IL-17A were determined by Cytometric Bead Array. Linear regression models analysed association among SLE, CP and salivary cytokines. RESULTS: IL-6 and IL-17A concentrations were significantly higher in SLE/CP patients than controls/CP. Concentrations of IL-6, IL-17A and IL-33 were increased in SLE/CP individuals when compared to SLE without CP. Multivariate model revealed association of cumulative dose of corticoids with periodontal damage and of IL-33 salivary concentration with SLE activity. CONCLUSIONS: Our findings suggest that long-term therapy with corticoids would contribute with periodontal destruction in SLE patients. Moreover, the increased levels of IL-6, IL-17A and IL-33 in saliva of SLE subjects with CP may signal it as possible inflammatory pathways in this process.


Asunto(s)
Periodontitis Crónica/inmunología , Citocinas/análisis , Lupus Eritematoso Sistémico/inmunología , Saliva/inmunología , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos
2.
J Clin Periodontol ; 44(8): 793-802, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28569991

RESUMEN

AIM: Leukotrienes (LTs) are pro-inflammatory lipid mediators formed by the enzyme 5-lipoxygenase (5-LO). The involvement of 5-LO metabolites in periodontal disease (PD) is not well defined. This study aimed to assess the role of 5-LO in experimental PD induced by Aggregatibacter actinomycetemcomitans (Aa). MATERIAL AND METHODS: In vivo experiments were carried out using SV129 wild-type (WT) and 5-LO-deficient (5lo-/- ) mice inoculated with Aa. Osteoclasts were stimulated in vitro with AaLPS in the presence or not of selective inhibitors of the 5-LO pathway, or LTB4 or platelet-activating factor (PAF), as PAF has already been shown to increase osteoclast activity. RESULTS: In 5lo-/- mice, there were no loss of alveolar bone and less TRAP-positive osteoclasts in periodontal tissues, after Aa inoculation, despite local production of TNF-α and IL-6. The differentiation and activity of osteoclasts stimulated with AaLPS were diminished in the presence of BLT1 antagonist or 5-LO inhibitor, but not in the presence of cysteinyl leukotriene receptor antagonist. The osteoclast differentiation induced by PAF was impaired by the BLT1 antagonism. CONCLUSION: In conclusion, LTB4 but not CysLTs is important for Aa-induced alveolar bone loss. Overall, LTB4 affects osteoclast differentiation and activity and is a key intermediate of PAF-induced osteoclastogenesis.


Asunto(s)
Aggregatibacter actinomycetemcomitans/patogenicidad , Pérdida de Hueso Alveolar/enzimología , Pérdida de Hueso Alveolar/microbiología , Araquidonato 5-Lipooxigenasa/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Hidroxiurea/análogos & derivados , Hidroxiurea/farmacología , Interleucina-6/metabolismo , Ratones , Osteoclastos/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/metabolismo
3.
FASEB J ; 30(12): 4033-4041, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27535487

RESUMEN

Alveolar bone loss is a result of an aggressive form of periodontal disease (PD) associated with Aggregatibacter actinomycetemcomitans (Aa) infection. PD is often observed with other systemic inflammatory conditions, including arthritis. Melanocortin peptides activate specific receptors to exert antiarthritic properties, avoiding excessing inflammation and modulating macrophage function. Recent work has indicated that melanocortin can control osteoclast development and function, but whether such protection takes place in infection-induced alveolar bone loss has not been investigated. The purpose of this study was to evaluate the role of melanocortin in Aa-induced PD. Mice were orally infected with Aa and treated with the melanocortin analog DTrp8-γMSH or vehicle daily for 30 d. Then, periodontal tissue was collected and analyzed. Aa-infected mice treated with DTrp8-γMSH presented decreased alveolar bone loss and a lower degree of neutrophil infiltration in the periodontium than vehicle-treated animals; these actions were associated with reduced periodontal levels of TNF-α, IFN-γ, and IL-17A. In vitro experiments with cells differentiated into osteoclasts showed that osteoclast formation and resorptive activity were attenuated after treatment with DTrp8-γMSH. Thus, melanocortin agonism could represent an innovative way to tame overexuberant inflammation and, at the same time, preserve bone physiology, as seen after Aa infection.-Madeira, M. F. M., Queiroz-Junior, C. M., Montero-Melendez, T., Werneck, S. M. C., Corrêa, J. D., Soriani, F. M., Garlet, G. P., Souza, D. G., Teixeira, M. M., Silva, T. A., Perretti, M. Melanocortin agonism as a viable strategy to control alveolar bone loss induced by oral infection.


Asunto(s)
Pérdida de Hueso Alveolar/prevención & control , Melanocortinas/agonistas , Osteoclastos/microbiología , Infecciones por Pasteurellaceae/prevención & control , Enfermedades Periodontales/metabolismo , Aggregatibacter actinomycetemcomitans , Pérdida de Hueso Alveolar/etiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Macrófagos/inmunología , Ratones Endogámicos C57BL , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo
4.
Life Sci ; 86(25-26): 951-6, 2010 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-20451533

RESUMEN

AIMS: The endogenous opioids mediate the analgesic effects of celecoxib in a model of mechanical hyperalgesia in rats. As responses to thermal stimuli may differ from those to mechanical stimuli, we have here assessed celecoxib in a rat model of thermal hyperalgesia and the possible involvement of endogenous opioids and their corresponding receptors in these effects. MAIN METHODS: Injection of carrageenan (CG) into one hind paw induced a dose-related hyperalgesia (decreased time for paw withdrawal) to thermal stimuli (infra-red light beam), over 6h. KEY FINDINGS: Celecoxib (sc) 30 min before CG (250 microg per paw) induced a dose-dependent reversal of hyperalgesia, with withdrawal times well above basal levels, characterizing development of hypoalgesia. Indomethacin (sc) reversed CG-induced hyperalgesia only to basal levels (an anti-hyperalgesic effect). Naltrexone (sc) prevented hypoalgesia after celecoxib but did not change the response to indomethacin. Local (intraplantar) injection of either a selective antagonist of mu-(beta-funaltrexamine), kappa-(nor-binaltorphimine) or of delta-(naltrindole) opioid receptors also reversed the hypoalgesic effects of celecoxib, without modifying the hyperalgesia due to CG or affecting the nociceptive thresholds in the non-injected paw. SIGNIFICANCE: Our data show that celecoxib, unlike indomethacin, was hypoalgesic in this model of thermal hyperalgesia, and that this effect was mediated by peripheral mu-, kappa- and delta-opioid receptors.


Asunto(s)
Hiperalgesia/tratamiento farmacológico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Receptores Opioides/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Animales , Carragenina , Celecoxib , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hiperalgesia/fisiopatología , Masculino , Antagonistas de Narcóticos , Umbral del Dolor/efectos de los fármacos , Estimulación Física , Ratas , Receptores Opioides delta/antagonistas & inhibidores , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA