Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Heliyon ; 10(7): e28402, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38596090

Purpose of this study is to explore the extraction of potentially valuable cosmetic ingredients from rice crop residues, aiming to mitigate their environmental impact. Methods: We employed AOAC methods to analyze the fat, protein, ash, fiber, soluble, and insoluble carbohydrate content in these residues. To identify sugars rich in galactose and acidic sugars, a total soluble carbohydrate extraction was performed. Cellulose, as part of the insoluble carbohydrates, was isolated through alkaline and acid hydrolysis, while sodium silicate was derived from the ash. Characterization of insoluble cellulose and silicate involved techniques like FTIR, DSC, PXRD, microphotography, porosity assessments, and water absorption studies. For proteins, alkaline solubilization and precipitation at the isoelectric point were utilized, with quantification via BCA and amino acid profiling through gas chromatography. Evaluation of radical scavenging capacity using DPPH led to the calculation of apparent molecular weight via SDS-PAGE. Results: The results revealed low levels of gum, mucilage, and pectin in both residues, contrasting with a high concentration of insoluble polysaccharides. Among these, Iß cellulose displayed potential attributes for cosmetic applications due to its oil and water adsorption characteristics. However, silicates obtained from the ashes did not exhibit direct use potential. In terms of protein extraction, we observed antioxidant properties, with enhanced performance through enzymatic hydrolysis, achieving a hydrolysis degree of 30.41% and a DPPH radical absorption rate exceeding 70%. Conclusion: Rice residues, particularly husk and straw, shown valuable substances suitable for potential cosmetic applications, encompassing cellulose, hydrolyzed proteins, and ash as a silicate precursor.

2.
Toxins (Basel) ; 15(7)2023 07 02.
Article En | MEDLINE | ID: mdl-37505705

Spider venoms are composed, among other substances, of peptide toxins whose selectivity for certain physiological targets has made them powerful tools for applications such as bioinsecticides, analgesics, antiarrhythmics, antibacterials, antifungals and antimalarials, among others. Bioinsecticides are an environmentally friendly alternative to conventional agrochemicals. In this paper, the primary structure of an insecticidal peptide was obtained from the venom gland transcriptome of the ctenid spider Phoneutria depilata (Transcript ID PhdNtxNav24). The peptide contains 53 amino acids, including 10 Cys residues that form 5 disulfide bonds. Using the amino acid sequence of such peptide, a synthetic gene was constructed de novo by overlapping PCRs and cloned into an expression vector. A recombinant peptide, named delta-ctenitoxin (rCtx-4), was obtained. It was expressed, folded, purified and validated using mass spectrometry (7994.61 Da). The insecticidal activity of rCtx-4 was demonstrated through intrathoracic injection in crickets (LD50 1.2 µg/g insect) and it was not toxic to mice. rCtx-4 is a potential bioinsecticide that could have a broad spectrum of applications in agriculture.


Insecticides , Spider Venoms , Spiders , Mice , Animals , Insecticides/pharmacology , Insecticides/chemistry , Transcriptome , Colombia , Peptides/pharmacology , Peptides/toxicity , Spider Venoms/genetics , Spider Venoms/toxicity , Spider Venoms/chemistry , Spiders/genetics
3.
Toxicon ; 223: 107012, 2023 Feb.
Article En | MEDLINE | ID: mdl-36592762

The methylotrophic yeast Pichia pastoris has been one of the most widely used organisms in recent years as an expression system for a wide variety of recombinant proteins with therapeutic potential. Its popularity as an alternative system to Escherichia coli is mainly due to the easy genetic manipulation and the ability to produce high levels of heterologous proteins, either intracellularly or extracellularly. Being a eukaryotic organism, P. pastoris carries out post-translational modifications that allow it to produce soluble and correctly folded recombinant proteins. This work, evaluated the expression capacity in P. pastoris of two single-chain variable fragments (scFvs) of human origin, 10FG2 and LR. These scFvs were previously obtained by directed evolution against scorpion venom toxins and are able to neutralize different toxins and venoms of Mexican species. The yield obtained in P. pastoris was higher than that obtained in bacterial periplasm (E. coli), and most importantly, biochemical and functional properties were not modified. These results confirm that P. pastoris yeast can be a good expression system for the production of antibody fragments of a new recombinant antivenom.


Scorpions , Venoms , Animals , Humans , Scorpions/chemistry , Venoms/metabolism , Saccharomyces cerevisiae/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/chemistry , Immunoglobulin Fragments/genetics , Immunoglobulin Fragments/metabolism
4.
Article En | MEDLINE | ID: mdl-36578820

Background: Scorpion neurotoxins such as those that modify the mammalian voltage-gated sodium ion channels (Nav) are the main responsible for scorpion envenomation. Their neutralization is crucial in the production of antivenoms against scorpion stings. Methods: In the present study, two in silico designed genes - one that codes for a native neurotoxin from the venom of the Anatolian scorpion Androctonus crassicauda, named Acra 4 - and another non-native toxin - named consensus scorpion toxin (SccTx) obtained from the alignment of the primary structures of the most toxic neurotoxins from the Middle Eastern and North African scorpions - were recombinantly expressed in E. coli Origami. Results: Following bacterial expression, the two expressed neurotoxins, hereafter named HisrAcra4 and HisrSccTx, were obtained from inclusion bodies. Both recombinant neurotoxins were obtained in multiple Cys-Cys isoforms. After refolding, the active protein fractions were identified with molecular masses of 8,947.6 and 9,989.1 Da for HisrAcra4 and HisrSccTx, respectively, which agreed with their expected theoretical masses. HisrAcra4 and HisrSccTx were used as antigens to immunize two groups of rabbits, to produce either anti-HisrAcra4 or anti-HisrSccTx serum antibodies, which in turn could recognize and neutralize neurotoxins from venoms of scorpion species from the Middle East and North Africa. The antibodies obtained from rabbits neutralized the 3LD50 of Androctonus australis, Leiurus quinquestriatus hebraeus and Buthus occitanus venoms, but they did not neutralize A. crassicauda and A. mauritanicus venoms. In addition, the anti-HisrAcra4 antibodies did not neutralize any of the five scorpion venoms tested. However, an antibody blend of anti-HisrAcra4 and anti-HisrSccTx was able to neutralize A. crassicauda and A. mauritanicus venoms. Conclusions: Two recombinant Nav neurotoxins, from different peptide families, were used as antigens to generate IgGs for neutralizing scorpion venoms of species from the Middle East and North Africa.

5.
Foods ; 11(19)2022 Oct 06.
Article En | MEDLINE | ID: mdl-36230192

Given consumer trends propelling a movement toward using plant protein in the food industry and searching for alternative protein ingredients by the industry, this study aimed to assess the influence of factors such as protein concentration, medium pH, and the presence of a divalent ion (Ca2+) upon the rheological properties such as viscosity change and gel formation of dispersion proteins extracted from quinoa, black beans, and lentils. A solution of each protein was prepared by varying its concentration (2.5%, 5.0%, and 10%), the pH (5.0, 7.0, and 9.0), and the incorporation of calcium chloride (0.0% and 1.0%). Each obtained solution was subjected to rheological tests to determine the parameters: consistency index (K), flow behavior (n), the storage (G') and loss (G'') modules, and the phase shift angle (δ). The results demonstrate that the incorporation of Ca2+, the shift in protein levels, and the decrease in pH modified the rheological behaviors of proteins, which were also influenced by the structural characteristics of each protein studied. However, thermal treatment and protein concentrations caused the most significant impact on proteins' rheological behavior, forming gels independently of other conditions. It was possible to study and interpret the studied proteins' rheological variations according to the environment's conditions.

6.
Toxins (Basel) ; 14(6)2022 05 31.
Article En | MEDLINE | ID: mdl-35737043

Crotoxin complex CA/CB and crotamine are the main toxins associated with Crotalus envenomation besides the enzymatic activities of phospholipases (PLA2) and proteases. The neutralization at least of the crotoxin complex by neutralizing the subunit B could be a key in the production process of antivenoms against crotalids. Therefore, in this work, a Crotoxin B was recombinantly expressed to evaluate its capacity as an immunogen and its ability to produce neutralizing antibodies against crotalid venoms. A Crotoxin B transcript from Crotalus tzabcan was cloned into a pCR®2.1-TOPO vector (Invitrogen, Waltham, MA, USA) and subsequently expressed heterologously in bacteria. HisrCrotoxin B was extracted from inclusion bodies and refolded in vitro. The secondary structure of HisrCrotoxin B was comparable to the secondary structure of the native Crotoxin B, and it has PLA2 activity as the native Crotoxin B. HisrCrotoxin B was used to immunize rabbits, and the obtained antibodies partially inhibited the activity of PLA2 from C. tzabcan. The anti-HisrCrotoxin B antibodies neutralized the native Crotoxin B and the whole venoms from C. tzabcan, C. s. salvini, and C. mictlantecuhtli. Additionally, anti-HisrCrotoxin B antibodies recognized native Crotoxin B from different Crotalus species, and they could discriminate venom in species with high or low levels of or absence of Crotoxin B.


Crotalid Venoms , Crotoxin , Animals , Crotalid Venoms/metabolism , Crotalus/metabolism , Phospholipases A2/genetics , Protein Folding , Rabbits
7.
Antibiotics (Basel) ; 11(5)2022 Apr 30.
Article En | MEDLINE | ID: mdl-35625251

The antimicrobial and immunomodulatory capacities of the peptide Css54 and the chemokine MCP-1 were tested. The first, a peptide isolated from the venom of the scorpion Centruroides suffusus suffusus was synthesized chemically. In contrast, the second is a monocyte chemoattractant expressed as a recombinant protein in our lab. It was observed in vitro that Css54 inhibited the growth of Salmonella enterica serovar Typhimurium (6.2 µg/mL). At high concentrations, it was toxic to macrophages (25 µg/mL), activated macrophage phagocytosis (1.5 µg/mL), and bound Salmonella LPS (3 µg/mL). On the other hand, the recombinant MCP-1 neither inhibited the growth of Salmonella Typhimurium nor was it toxic to macrophages (up to 25 µg/mL), nor activated macrophage phagocytosis or bound Salmonella LPS (up to 3 µg/mL). Although it was observed in vivo in mice Balb/C that both Css54 and MCP-1 did not resolve the intraperitoneal infection by S. Typhimurium, Css54 decreased the expression of IL-6 and increased IL-10, IL-12p70, and TNF-α levels; meanwhile, MCP-1 decreased the expression of IFN-γ and increased IL-12p70 and TNF-α. It was also observed that the combination of both molecules Css54 and MCP-1 increased the expression of IL-10 and TNF-α.

8.
Toxins (Basel) ; 14(5)2022 04 21.
Article En | MEDLINE | ID: mdl-35622542

The transcriptome of the venom glands of the Phoneutria depilata spider was analyzed using RNA-seq with an Illumina protocol, which yielded 86,424 assembled transcripts. A total of 682 transcripts were identified as potentially coding for venom components. Most of the transcripts found were neurotoxins (156) that commonly act on sodium and calcium channels. Nevertheless, transcripts coding for some enzymes (239), growth factors (48), clotting factors (6), and a diuretic hormone (1) were found, which have not been described in this spider genus. Furthermore, an enzymatic characterization of the venom of P. depilata was performed, and the proteomic analysis showed a correlation between active protein bands and protein sequences found in the transcriptome. The transcriptomic analysis of P. depilata venom glands show a deeper description of its protein components, allowing the identification of novel molecules that could lead to the treatment of human diseases, or could be models for developing bioinsecticides.


Spider Venoms , Spiders , Animals , Colombia , Proteomics , Spider Venoms/genetics , Spider Venoms/metabolism , Spiders/genetics , Transcriptome
9.
Antioxidants (Basel) ; 9(4)2020 Apr 13.
Article En | MEDLINE | ID: mdl-32294926

This study aimed to assess the thermal stability of the bioactive compounds from annatto seed extract, encapsulated by ionic gelation using quinoa proteins, lentil proteins, soy proteins, and sodium caseinate as carrying materials. The 10.0% aqueous dispersions of the different proteins (carriers) were prepared and mixed with the annatto seed extract. The dispersions were then extruded into a calcium chloride solution to induce the extract encapsulation. The capsules were characterized by encapsulation efficiency, particle size, infrared transmission spectroscopy, confocal microscopy, and scanning electron microscopy (SEM). The antioxidant and antimicrobial activities, the polyphenol compounds, and bixin content from the free and encapsulated extract were assessed once stored for 12 d at different temperatures (4 °C, 25 °C, and 65 °C). The results demonstrated the ability of the proteins to encapsulate the annatto extract with encapsulation efficiencies ranging from 58% to 80%, where the protein structure and amino acid content were the relevant factors to obtain high encapsulation efficiencies. The free extracts stored at 65 °C for 12 d experienced a degradation of bixin and polyphenol compounds, respectively. Conversely, the encapsulated extract had degradations from ~34.00% to ~4.05% for polyphenol compounds and ~20.0% for bixin, respectively. These proteins have a potential encapsulation capacity of annatto extract by ionic gelation.

10.
Amino Acids ; 52(3): 465-475, 2020 Mar.
Article En | MEDLINE | ID: mdl-32067123

δ-Atracotoxins, also known as δ-hexatoxins, are spider neurotoxic peptides, lethal to both vertebrates and insects. Their mechanism of action involves the binding to of the S3/S4 loop of the domain IV of the voltage-gated sodium channels (Nav). Because of the chemical difficulties of synthesizing folded synthetic δ-atracotoxins correctly, here we explore an expression system that is designed to produce biologically active recombinant δ-atracotoxins, and a number of variants, in order to establish certain amino acids implicated in the pharmacophore of this lethal neurotoxin. In order to elucidate and verify which amino acid residues play a key role that is toxic to vertebrates and insects, amino acid substitutes were produced by aligning the primary structures of several lethal δ-atracotoxins with those of δ-atracotoxins-Hv1b; a member of the δ-atracotoxin family that has low impact on vertebrates and is not toxic to insects. Our findings corroborate that the substitutions of the amino acid residue Y22 from δ-atracotoxin-Mg1a (Magi4) to K22 in δ-atracotoxin-Hv1b reduces its mammalian activity. Moreover, the substitutions of the amino acid residues Y22 and N26 from δ-atracotoxin-Mg1a (Magi4) to K22 and N26 in δ-atracotoxin-Hv1b reduces its insecticidal activity. Also, the basic residues K4 and R5 are important for keeping such insecticidal activity. Structural models suggest that such residues are clustered onto two bioactive surfaces, which share similar areas, previously reported as bioactive surfaces for scorpion α-toxins. Furthermore, these bioactive surfaces were also found to be similar to those found in related spider and anemone toxins, which affect the same Nav receptor, indicating that these motifs are important not only for scorpion but may be also for animal toxins that affect the S3/S4 loop of the domain IV of the Nav.


Insecticides/chemistry , Neurotoxins/chemistry , Spider Venoms/chemistry , Amino Acid Motifs , Amino Acid Sequence/genetics , Amino Acid Substitution/genetics , Amino Acids/genetics , Animals , Gryllidae , Insecticides/toxicity , Lethal Dose 50 , Mice , Neurotoxins/genetics , Neurotoxins/toxicity , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Spider Venoms/genetics , Spider Venoms/toxicity
11.
Front Pharmacol ; 11: 563858, 2020.
Article En | MEDLINE | ID: mdl-33597864

Spider venoms include various peptide toxins that modify the ion currents, mainly of excitable insect cells. Consequently, scientific research on spider venoms has revealed a broad range of peptide toxins with different pharmacological properties, even for mammal species. In this work, thirty animal venoms were screened against hKv1.5, a potential target for atrial fibrillation therapy. The whole venom of the spider Oculicosa supermirabilis, which is also insecticidal to house crickets, caused voltage-gated potassium ion channel modulation in hKv1.5. Therefore, a peptide from the spider O. supermirabilis venom, named Osu1, was identified through HPLC reverse-phase fractionation. Osu1 displayed similar biological properties as the whole venom; so, the primary sequence of Osu1 was elucidated by both of N-terminal degradation and endoproteolytic cleavage. Based on its primary structure, a gene that codifies for Osu1 was constructed de novo from protein to DNA by reverse translation. A recombinant Osu1 was expressed using a pQE30 vector inside the E. coli SHuffle expression system. recombinant Osu1 had voltage-gated potassium ion channel modulation of human hKv1.5, and it was also as insecticidal as the native toxin. Due to its novel primary structure, and hypothesized disulfide pairing motif, Osu1 may represent a new family of spider toxins.

12.
Protein Expr Purif ; 167: 105539, 2020 03.
Article En | MEDLINE | ID: mdl-31715251

At present, expressing antimicrobial peptides in bacterial models is considered a routine lab bench work. However, low expression yields of these types of proteins are usually obtained. In this work, the antimicrobial peptide human ß-defensin 2 (HBD2) was obtained in low expression yields in Escherichia coli BL21(DE3). To improve the expression yields of HBD2, some variables such as cell density, temperature, and length of induction, as well as the inducer concentration, were investigated using a 24-factorial design of experiments (DoE). This approach allowed us to identify the identification of critical variables (main effects and interactions among factors) affecting bacterial HBD2 expression. After the evaluation of 19 different combination, the best condition to express HBD2 had a pre-induction temperature of 37 °C, a cell density of 1.0 U (600 nm), an induction temperature of 20 °C and a 0.1 mM of gene expression inducer (IPTG) over four hours. Under such conditions, the expression yield of the HBD2 peptide was one order of magnitude higher than the peptide expression performed initially.


Research Design , beta-Defensins/biosynthesis , Anti-Infective Agents , Escherichia coli/genetics , Gene Expression , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , beta-Defensins/genetics
13.
Toxins (Basel) ; 11(12)2019 12 02.
Article En | MEDLINE | ID: mdl-31810356

Bothropic venoms contain enzymes such as metalloproteases, serine-proteases, and phospholipases, which acting by themselves, or in synergism, are the cause of the envenomation symptoms and death. Here, two mRNA transcripts, one that codes for a metalloprotease and another for a serine-protease, were isolated from a Bothrops ammodytoides venom gland. The metalloprotease and serine-protease transcripts were cloned on a pCR®2.1-TOPO vector and consequently expressed in a recombinant way in E. coli (strains Origami and M15, respectively), using pQE30 vectors. The recombinant proteins were named rBamSP_1 and rBamMP_1, and they were formed by an N-terminal fusion protein of 16 amino acid residues, followed by the sequence of the mature proteins. After bacterial expression, each recombinant enzyme was recovered from inclusion bodies and treated with chaotropic agents. The experimental molecular masses for rBamSP_1 and rBamMP_1 agreed with their expected theoretical ones, and their secondary structure spectra obtained by circular dichroism were comparable to that of similar proteins. Additionally, equivalent mixtures of rBamSP_1, rBamMP_1 together with a previous reported recombinant phospholipase, rBamPLA2_1, were used to immunize rabbits to produce serum antibodies, which in turn recognized serine-proteases, metalloproteases and PLA2s from B. ammodytoides and other regional viper venoms. Finally, rabbit antibodies neutralized the 3LD50 of B. ammodytoides venom.


Antibodies, Neutralizing/immunology , Bothrops , Crotalid Venoms/immunology , Metalloproteases/immunology , Phospholipases/immunology , Reptilian Proteins/immunology , Serine Proteases/immunology , Animals , Crotalid Venoms/chemistry , Metalloproteases/chemistry , Metalloproteases/genetics , Phospholipases/chemistry , Phospholipases/genetics , Rabbits , Recombinant Proteins , Reptilian Proteins/chemistry , Reptilian Proteins/genetics , Serine Proteases/chemistry , Serine Proteases/genetics
...