Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898281

RESUMEN

De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.

2.
Nat Chem Biol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811854

RESUMEN

Cysteine cathepsins are a family of proteases that are relevant therapeutic targets for the treatment of different cancers and other diseases. However, no clinically approved drugs for these proteins exist, as their systemic inhibition can induce deleterious side effects. To address this problem, we developed a modular antibody-based platform for targeted drug delivery by conjugating non-natural peptide inhibitors (NNPIs) to antibodies. NNPIs were functionalized with reactive warheads for covalent inhibition, optimized with deep saturation mutagenesis and conjugated to antibodies to enable cell-type-specific delivery. Our antibody-peptide inhibitor conjugates specifically blocked the activity of cathepsins in different cancer cells, as well as osteoclasts, and showed therapeutic efficacy in vitro and in vivo. Overall, our approach allows for the rapid design of selective cathepsin inhibitors and can be generalized to inhibit a broad class of proteases in cancer and other diseases.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38565617

RESUMEN

The field of protein design has made remarkable progress over the past decade. Historically, the low reliability of purely structure-based design methods limited their application, but recent strategies that combine structure-based and sequence-based calculations, as well as machine learning tools, have dramatically improved protein engineering and design. In this Review, we discuss how these methods have enabled the design of increasingly complex structures and therapeutically relevant activities. Additionally, protein optimization methods have improved the stability and activity of complex eukaryotic proteins. Thanks to their increased reliability, computational design methods have been applied to improve therapeutics and enzymes for green chemistry and have generated vaccine antigens, antivirals and drug-delivery nano-vehicles. Moreover, the high success of design methods reflects an increased understanding of basic rules that govern the relationships among protein sequence, structure and function. However, de novo design is still limited mostly to α-helix bundles, restricting its potential to generate sophisticated enzymes and diverse protein and small-molecule binders. Designing complex protein structures is a challenging but necessary next step if we are to realize our objective of generating new-to-nature activities.

4.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496615

RESUMEN

De novo design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.

5.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325366

RESUMEN

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Asunto(s)
Inteligencia Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariontes/química , Eucariontes/genética , Bacterias/química , Bacterias/genética
6.
Nat Chem Biol ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957273

RESUMEN

Biological signal processing is vital for cellular function. Similar to electronic circuits, cells process signals via integrated mechanisms. In electronics, bandpass filters transmit frequencies with defined ranges, but protein-based counterparts for controlled responses are lacking in engineered biological systems. Here, we rationally design protein-based, chemically responsive bandpass filters (CBPs) showing OFF-ON-OFF patterns that respond to chemical concentrations within a specific range and reject concentrations outside that range. Employing structure-based strategies, we designed a heterodimeric construct that dimerizes in response to low concentrations of a small molecule (ON), and dissociates at high concentrations of the same molecule (OFF). The CBPs have a multidomain architecture in which we used known drug receptors, a computationally designed protein binder and small-molecule inhibitors. This modular system allows fine-tuning for optimal performance in terms of bandwidth, response, cutoff and fold changes. The CBPs were used to regulate cell surface receptor signaling pathways to control cellular activities in engineered cells.

7.
Protein Sci ; 32(10): e4774, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37656809

RESUMEN

Small-molecule responsive protein switches are powerful tools for controlling cellular processes. These switches are designed to respond rapidly and specifically to their inducer. They have been used in numerous applications, including the regulation of gene expression, post-translational protein modification, and signal transduction. Typically, small-molecule responsive protein switches consist of two proteins that interact with each other in the presence or absence of a small molecule. Recent advances in computational protein design already contributed to the development of protein switches with an expanded range of small-molecule inducers and increasingly sophisticated switch mechanisms. Further progress in the engineering of small-molecule responsive switches is fueled by cutting-edge computational design approaches, which will enable more complex and precise control over cellular processes and advance synthetic biology applications in biotechnology and medicine. Here, we discuss recent milestones and how technological advances are impacting the development of chemical switches.


Asunto(s)
Proteínas , Transducción de Señal , Proteínas/genética , Transducción de Señal/genética , Procesamiento Proteico-Postraduccional , Biología Sintética
8.
Cell Rep ; 42(10): 113173, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742189

RESUMEN

G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to heterotrimeric G proteins of four classes: Gi/o, Gq, Gs, and G12/13. However, our understanding of the G protein selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living cells and reveal the G protein selectivity of 124 GPCRs with the exact rank order of their G protein preference. Using this information, we establish a classification of GPCRs by functional selectivity, discover the existence of a G12/13-coupled receptor, G15-coupled receptors, and a variety of subclasses for Gi/o-, Gq-, and Gs-coupled receptors, culminating in development of the predictive algorithm of G protein selectivity. We further identify the structural determinants of G protein selectivity, allowing us to synthesize non-existent GPCRs with de novo G protein selectivity and efficiently identify putative pathogenic variants.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo , Transducción de Señal/fisiología , Proteínas Portadoras/metabolismo , Algoritmos
9.
Proteomics ; 23(17): e2200323, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365936

RESUMEN

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.


Asunto(s)
Proteínas , Reproducibilidad de los Resultados , Proteínas/metabolismo , Unión Proteica
10.
ACS Chem Biol ; 18(6): 1259-1265, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37252896

RESUMEN

Protein-based therapeutics, such as monoclonal antibodies and cytokines, are important therapies for various pathophysiological conditions such as oncology, autoimmune disorders, and viral infections. However, the wide application of such protein therapeutics is often hindered by dose-limiting toxicities and adverse effects, namely, cytokine storm syndrome, organ failure, and others. Therefore, spatiotemporal control of the activities of these proteins is crucial to further expand their application. Here, we report the design and application of small-molecule-controlled switchable protein therapeutics by taking advantage of a previously engineered OFF-switch system. We used the Rosetta modeling suite to computationally optimize the affinity between B-cell lymphoma 2 (Bcl-2) protein and a previously developed computationally designed protein partner (LD3) to obtain a fast and efficient heterodimer disruption upon the addition of a competing drug (Venetoclax). The incorporation of the engineered OFF-switch system into anti-CTLA4, anti-HER2 antibodies, or an Fc-fused IL-15 cytokine demonstrated an efficient disruption in vitro, as well as fast clearance in vivo upon the addition of the competing drug Venetoclax. These results provide a proof-of-concept for the rational design of controllable biologics by introducing a drug-induced OFF-switch into existing protein-based therapeutics.


Asunto(s)
Anticuerpos Monoclonales , Sulfonamidas , Anticuerpos Monoclonales/uso terapéutico , Citocinas
11.
Protein Sci ; 32(6): e4653, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37165539

RESUMEN

De novo protein design enhances our understanding of the principles that govern protein folding and interactions, and has the potential to revolutionize biotechnology through the engineering of novel protein functionalities. Despite recent progress in computational design strategies, de novo design of protein structures remains challenging, given the vast size of the sequence-structure space. AlphaFold2 (AF2), a state-of-the-art neural network architecture, achieved remarkable accuracy in predicting protein structures from amino acid sequences. This raises the question whether AF2 has learned the principles of protein folding sufficiently for de novo design. Here, we sought to answer this question by inverting the AF2 network, using the prediction weight set and a loss function to bias the generated sequences to adopt a target fold. Initial design trials resulted in de novo designs with an overrepresentation of hydrophobic residues on the protein surface compared to their natural protein family, requiring additional surface optimization. In silico validation of the designs showed protein structures with the correct fold, a hydrophilic surface and a densely packed hydrophobic core. In vitro validation showed that 7 out of 39 designs were folded and stable in solution with high melting temperatures. In summary, our design workflow solely based on AF2 does not seem to fully capture basic principles of de novo protein design, as observed in the protein surface's hydrophobic vs. hydrophilic patterning. However, with minimal post-design intervention, these pipelines generated viable sequences as assessed experimental characterization. Thus, such pipelines show the potential to contribute to solving outstanding challenges in de novo protein design.


Asunto(s)
Furilfuramida , Ingeniería de Proteínas , Ingeniería de Proteínas/métodos , Proteínas/química , Secuencia de Aminoácidos , Pliegue de Proteína
12.
Nature ; 617(7959): 176-184, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100904

RESUMEN

Physical interactions between proteins are essential for most biological processes governing life1. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic and structural data increase. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications2-9. Here we use a geometric deep-learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features that are critical to drive protein-protein interactions10. We hypothesized that these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof of principle, we computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were experimentally optimized, whereas others were generated purely in silico, reaching nanomolar affinity with structural and mutational characterization showing highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling an approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.


Asunto(s)
Simulación por Computador , Aprendizaje Profundo , Unión Proteica , Proteínas , Humanos , Proteínas/química , Proteínas/metabolismo , Proteómica , Mapas de Interacción de Proteínas , Sitios de Unión , Biología Sintética
13.
Curr Opin Biotechnol ; 78: 102821, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36279815

RESUMEN

Computational protein engineering has enabled the rational design of customized proteins, which has propelled both sequence-based and structure-based immunogen engineering and delivery. By discerning antigenic determinants of viral pathogens, computational methods have been implemented to successfully engineer representative viral strains able to elicit broadly neutralizing responses or present antigenic sites of viruses for focused immune responses. Combined with improvements in customizable nanoparticle design, immunogens are multivalently displayed to enhance immune responses. These rationally designed immunogens offer unique and powerful approaches to engineer vaccines for pathogens, which have eluded traditional approaches.


Asunto(s)
Vacunas contra el SIDA , Vacunas , Anticuerpos Neutralizantes , Ingeniería de Proteínas
14.
Proc Natl Acad Sci U S A ; 119(43): e2206111119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252041

RESUMEN

De novo protein design enables the exploration of novel sequences and structures absent from the natural protein universe. De novo design also stands as a stringent test for our understanding of the underlying physical principles of protein folding and may lead to the development of proteins with unmatched functional characteristics. The first fundamental challenge of de novo design is to devise "designable" structural templates leading to sequences that will adopt the predicted fold. Here, we built on the TopoBuilder (TB) de novo design method, to automatically assemble structural templates with native-like features starting from string descriptors that capture the overall topology of proteins. Our framework eliminates the dependency of hand-crafted and fold-specific rules through an iterative, data-driven approach that extracts geometrical parameters from structural tertiary motifs. We evaluated the TopoBuilder framework by designing sequences for a set of five protein folds and experimental characterization revealed that several sequences were folded and stable in solution. The TopoBuilder de novo design framework will be broadly useful to guide the generation of artificial proteins with customized geometries, enabling the exploration of the protein universe.


Asunto(s)
Pliegue de Proteína , Proteínas , Modelos Moleculares , Ingeniería de Proteínas/métodos , Proteínas/química
15.
Protein Sci ; 31(9): e4400, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36040259

RESUMEN

Recent advances in protein-design methodology have led to a dramatic increase in reliability and scale. With these advances, dozens and even thousands of designed proteins are automatically generated and screened. Nevertheless, the success rate, particularly in design of functional proteins, is low and fundamental goals such as reliable de novo design of efficient enzymes remain beyond reach. Experimental analyses have consistently indicated that a major reason for design failure is inaccuracy and misfolding relative to the design conception. To address this challenge, we describe complementary methods to diagnose and ameliorate suboptimal regions in designed proteins: first, we develop a Rosetta atomistic computational mutation scanning approach to detect energetically suboptimal positions in designs (available on a web server https://pSUFER.weizmann.ac.il); second, we demonstrate that AlphaFold2 ab initio structure prediction flags regions that may misfold in designed enzymes and binders; and third, we focus FuncLib design calculations on suboptimal positions in a previously designed low-efficiency enzyme, improving its catalytic efficiency by 330-fold. Furthermore, applied to a de novo designed protein that exhibited limited stability, the same approach markedly improved stability and expressibility. Thus, foldability analysis and enhancement may dramatically increase the success rate in design of functional proteins.


Asunto(s)
Ingeniería de Proteínas , Proteínas , Catálisis , Conformación Proteica , Ingeniería de Proteínas/métodos , Proteínas/química , Reproducibilidad de los Resultados
16.
Curr Opin Struct Biol ; 74: 102370, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35405427

RESUMEN

Protein-protein interactions (PPIs) govern numerous cellular functions in terms of signaling, transport, defense and many others. Designing novel PPIs poses a fundamental challenge to our understanding of molecular interactions. The capability to robustly engineer PPIs has immense potential for the development of novel synthetic biology tools and protein-based therapeutics. Over the last decades, many efforts in this area have relied purely on experimental approaches, but more recently, computational protein design has made important contributions. Template-based approaches utilize known PPIs and transplant the critical residues onto heterologous scaffolds. De novo design instead uses computational methods to generate novel binding motifs, allowing for a broader scope of the sites engaged in protein targets. Here, we review successful design cases, giving an overview of the methodological approaches used for templated and de novo PPI design.


Asunto(s)
Biología Computacional , Proteínas , Unión Proteica , Proteínas/química
17.
PLoS Comput Biol ; 18(3): e1009178, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294435

RESUMEN

Proteins are typically represented by discrete atomic coordinates providing an accessible framework to describe different conformations. However, in some fields proteins are more accurately represented as near-continuous surfaces, as these are imprinted with geometric (shape) and chemical (electrostatics) features of the underlying protein structure. Protein surfaces are dependent on their chemical composition and, ultimately determine protein function, acting as the interface that engages in interactions with other molecules. In the past, such representations were utilized to compare protein structures on global and local scales and have shed light on functional properties of proteins. Here we describe RosettaSurf, a surface-centric computational design protocol, that focuses on the molecular surface shape and electrostatic properties as means for protein engineering, offering a unique approach for the design of proteins and their functions. The RosettaSurf protocol combines the explicit optimization of molecular surface features with a global scoring function during the sequence design process, diverging from the typical design approaches that rely solely on an energy scoring function. With this computational approach, we attempt to address a fundamental problem in protein design related to the design of functional sites in proteins, even when structurally similar templates are absent in the characterized structural repertoire. Surface-centric design exploits the premise that molecular surfaces are, to a certain extent, independent of the underlying sequence and backbone configuration, meaning that different sequences in different proteins may present similar surfaces. We benchmarked RosettaSurf on various sequence recovery datasets and showcased its design capabilities by generating epitope mimics that were biochemically validated. Overall, our results indicate that the explicit optimization of surface features may lead to new routes for the design of functional proteins.


Asunto(s)
Ingeniería de Proteínas , Proteínas , Algoritmos , Biología Computacional/métodos , Conformación Proteica , Ingeniería de Proteínas/métodos , Proteínas/química , Electricidad Estática
18.
Nat Commun ; 12(1): 5754, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599176

RESUMEN

Small-molecule responsive protein switches are crucial components to control synthetic cellular activities. However, the repertoire of small-molecule protein switches is insufficient for many applications, including those in the translational spaces, where properties such as safety, immunogenicity, drug half-life, and drug side-effects are critical. Here, we present a computational protein design strategy to repurpose drug-inhibited protein-protein interactions as OFF- and ON-switches. The designed binders and drug-receptors form chemically-disruptable heterodimers (CDH) which dissociate in the presence of small molecules. To design ON-switches, we converted the CDHs into a multi-domain architecture which we refer to as activation by inhibitor release switches (AIR) that incorporate a rationally designed drug-insensitive receptor protein. CDHs and AIRs showed excellent performance as drug responsive switches to control combinations of synthetic circuits in mammalian cells. This approach effectively expands the chemical space and logic responses in living cells and provides a blueprint to develop new ON- and OFF-switches.


Asunto(s)
Diseño Asistido por Computadora , Receptores de Droga/metabolismo , Biología Sintética/métodos , Células HEK293 , Humanos , Multimerización de Proteína/efectos de los fármacos , Receptores de Droga/agonistas , Receptores de Droga/antagonistas & inhibidores
19.
Nat Biomed Eng ; 5(6): 600-612, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33859386

RESUMEN

The optimization of therapeutic antibodies is time-intensive and resource-demanding, largely because of the low-throughput screening of full-length antibodies (approximately 1 × 103 variants) expressed in mammalian cells, which typically results in few optimized leads. Here we show that optimized antibody variants can be identified by predicting antigen specificity via deep learning from a massively diverse space of antibody sequences. To produce data for training deep neural networks, we deep-sequenced libraries of the therapeutic antibody trastuzumab (about 1 × 104 variants), expressed in a mammalian cell line through site-directed mutagenesis via CRISPR-Cas9-mediated homology-directed repair, and screened the libraries for specificity to human epidermal growth factor receptor 2 (HER2). We then used the trained neural networks to screen a computational library of approximately 1 × 108 trastuzumab variants and predict the HER2-specific subset (approximately 1 × 106 variants), which can then be filtered for viscosity, clearance, solubility and immunogenicity to generate thousands of highly optimized lead candidates. Recombinant expression and experimental testing of 30 randomly selected variants from the unfiltered library showed that all 30 retained specificity for HER2. Deep learning may facilitate antibody engineering and optimization.


Asunto(s)
Antígenos/química , Aprendizaje Profundo , Ingeniería de Proteínas/métodos , Receptor ErbB-2/química , Trastuzumab/química , Secuencia de Aminoácidos , Animales , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Antígenos/genética , Antígenos/inmunología , Sistemas CRISPR-Cas , Humanos , Hibridomas/química , Hibridomas/inmunología , Mutagénesis Sitio-Dirigida , Unión Proteica , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Reparación del ADN por Recombinación , Análisis de Secuencia de Proteína , Trastuzumab/genética , Trastuzumab/inmunología
20.
Vaccines (Basel) ; 9(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925446

RESUMEN

The response of the adaptive immune system is augmented by multimeric presentation of a specific antigen, resembling viral particles. Several vaccines have been designed based on natural or designed protein scaffolds, which exhibited a potent adaptive immune response to antigens; however, antibodies are also generated against the scaffold, which may impair subsequent vaccination. In order to compare polypeptide scaffolds of different size and oligomerization state with respect to their efficiency, including anti-scaffold immunity, we compared several strategies of presentation of the RBD domain of the SARS-CoV-2 spike protein, an antigen aiming to generate neutralizing antibodies. A comparison of several genetic fusions of RBD to different nanoscaffolding domains (foldon, ferritin, lumazine synthase, and ß-annulus peptide) delivered as DNA plasmids demonstrated a strongly augmented immune response, with high titers of neutralizing antibodies and a robust T-cell response in mice. Antibody titers and virus neutralization were most potently enhanced by fusion to the small ß-annulus peptide scaffold, which itself triggered a minimal response in contrast to larger scaffolds. The ß-annulus fused RBD protein increased residence in lymph nodes and triggered the most potent viral neutralization in immunization by a recombinant protein. Results of the study support the use of a nanoscaffolding platform using the ß-annulus peptide for vaccine design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...