Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36831117

RESUMEN

Glioblastoma (GBM) is characterized by fast-growing cells, genetic and phenotypic heterogeneity, and radio-chemo-therapy resistance, contributing to its dismal prognosis. Various medical comorbidities are associated with the natural history of GBM. The most disabling and greatly affecting patients' quality of life are neurodegeneration, cognitive impairment, and GBM-related epilepsy (GRE). Hallmarks of GBM include molecular intrinsic mediators and pathways, but emerging evidence supports the key role of non-malignant cells within the tumor microenvironment in GBM aggressive behavior. In this context, hyper-excitability of neurons, mediated by glutamatergic and GABAergic imbalance, contributing to GBM growth strengthens the cancer-nervous system crosstalk. Pathogenic mechanisms, clinical features, and pharmacological management of GRE with antiepileptic drugs (AEDs) and their interactions are poorly explored, yet it is a potentially promising field of research in cancer neuroscience. The present review summarizes emerging cooperative mechanisms in oncogenesis and epileptogenesis, focusing on the neuron-to-glioma interface. The main effects and efficacy of selected AEDs used in the management of GRE are discussed in this paper, as well as their potential beneficial activity as antitumor treatment. Overall, although still many unclear processes overlapping in GBM growth and seizure onset need to be elucidated, this review focuses on the intriguing targeting of GBM-neuron mutual interactions to improve the outcome of the so challenging to treat GBM.

2.
Front Neurosci ; 16: 966019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148145

RESUMEN

Transmissible spongiform encephalopathies (TSEs), or prion diseases, are progressive neurodegenerative disorders of the central nervous system that affect humans and animals as sporadic, inherited, and infectious forms. Similarly to Alzheimer's disease and other neurodegenerative disorders, any attempt to reduce TSEs' lethality or increase the life expectancy of affected individuals has been unsuccessful. Typically, the onset of symptoms anticipates the fatal outcome of less than 1 year, although it is believed to be the consequence of a decades-long process of neuronal death. The duration of the symptoms-free period represents by itself a major obstacle to carry out effective neuroprotective therapies. Prions, the infectious entities of TSEs, are composed of a protease-resistant protein named prion protein scrapie (PrPSc) from the prototypical TSE form that afflicts ovines. PrPSc misfolding from its physiological counterpart, cellular prion protein (PrPC), is the unifying pathogenic trait of all TSEs. PrPSc is resistant to intracellular turnover and undergoes amyloid-like fibrillation passing through the formation of soluble dimers and oligomers, which are likely the effective neurotoxic entities. The failure of PrPSc removal is a key pathogenic event that defines TSEs as proteopathies, likewise other neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, characterized by alteration of proteostasis. Under physiological conditions, protein quality control, led by the ubiquitin-proteasome system, and macroautophagy clears cytoplasm from improperly folded, redundant, or aggregation-prone proteins. There is evidence that both of these crucial homeostatic pathways are impaired during the development of TSEs, although it is still unclear whether proteostasis alteration facilitates prion protein misfolding or, rather, PrPSc protease resistance hampers cytoplasmic protein quality control. This review is aimed to critically analyze the most recent advancements in the cause-effect correlation between PrPC misfolding and proteostasis alterations and to discuss the possibility that pharmacological restoring of ubiquitin-proteasomal competence and stimulation of autophagy could reduce the intracellular burden of PrPSc and ameliorate the severity of prion-associated neurodegeneration.

3.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638872

RESUMEN

BACKGROUND: Vasculogenic mimicry (VM) is a functional microcirculation pattern formed by aggressive tumor cells. Thus far, no effective drugs have been developed to target VM. Glioblastoma (GBM) is the most malignant form of brain cancer and is a highly vascularized tumor. Vasculogenic mimicry represents a means whereby GBM can escape anti-angiogenic therapies. METHODS: Here, using an in vitro tube formation assay on Matrigel, we evaluated the ability of N6-isopentenyladenosine (iPA) to interfere with vasculogenic mimicry (VM). RhoA activity was assessed using a pull-down assay, while the modulation of the adherens junctions proteins was analyzed by Western blot analysis. RESULTS: We found that iPA at sublethal doses inhibited the formation of capillary-like structures suppressing cell migration and invasion of U87MG, U343MG, and U251MG cells, of patient-derived human GBM cells and GBM stem cells. iPA reduces the vascular endothelial cadherin (VE-cadherin) expression levels in a dose-dependent manner, impairs the vasculogenic mimicry network by modulation of the Src/p120-catenin pathway and inhibition of RhoA-GTPase activity. CONCLUSIONS: Taken together, our results revealed iPA as a promising novel anti-VM drug in GBM clinical therapeutics.


Asunto(s)
Cateninas/metabolismo , Glioblastoma/tratamiento farmacológico , Isopenteniladenosina/farmacología , Neovascularización Patológica/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Cateninas/genética , Línea Celular Tumoral , Glioblastoma/irrigación sanguínea , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proteína de Unión al GTP rhoA/genética , Familia-src Quinasas/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-32153500

RESUMEN

Pituitary adenomas, accounting for 15% of diagnosed intracranial neoplasms, are usually benign and pharmacologically and surgically treatable; however, the critical location, mass effects and hormone hypersecretion sustain their significant morbidity. Approximately 35% of pituitary tumors show a less benign course since they are highly proliferative and invasive, poorly resectable, and likely recurring. The latest WHO classification of pituitary tumors includes pituitary transcription factor assessment to determine adenohypophysis cell lineages and accurate designation of adenomas, nevertheless little is known about molecular and cellular pathways which contribute to pituitary tumorigenesis. In malignant tumors the identification of cancer stem cells radically changed the concepts of both tumorigenesis and pharmacological approaches. Cancer stem cells are defined as a subset of undifferentiated transformed cells from which the bulk of cancer cells populating a tumor mass is generated. These cells are able to self-renew, promoting tumor progression and recurrence of malignant tumors, also conferring cytotoxic drug resistance. On the other hand, the existence of stem cells within benign tumors is still debated. The presence of adult stem cells in human and murine pituitaries where they sustain the high plasticity of hormone-producing cells, allowed the hypothesis that putative tumor stem cells might exist in pituitary adenomas, reinforcing the concept that the cancer stem cell model could also be applied to pituitary tumorigenesis. In the last few years, the isolation and phenotypic characterization of putative pituitary adenoma stem-like cells was performed using a wide and heterogeneous variety of experimental models and techniques, although the role of these cells in adenoma initiation and progression is still not completely definite. The assessment of possible pituitary adenoma-initiating cell population would be of extreme relevance to better understand pituitary tumor biology and to identify novel potential diagnostic markers and pharmacological targets. In this review, we summarize the most updated studies focused on the definition of pituitary adenoma stem cell phenotype and functional features, highlighting the biological processes and intracellular pathways potentially involved in driving tumor growth, relapse, and therapy resistance.


Asunto(s)
Adenoma/patología , Transformación Celular Neoplásica/patología , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/patología , Neoplasias Hipofisarias/patología , Adenoma/tratamiento farmacológico , Animales , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Hipofisarias/tratamiento farmacológico
5.
Cells ; 8(11)2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752162

RESUMEN

Cellular prion protein (PrPC) is a membrane-anchored glycoprotein representing the physiological counterpart of PrP scrapie (PrPSc), which plays a pathogenetic role in prion diseases. Relatively little information is however available about physiological role of PrPC. Although PrPC ablation in mice does not induce lethal phenotypes, impairment of neuronal and bone marrow plasticity was reported in embryos and adult animals. In neurons, PrPC stimulates neurite growth, prevents oxidative stress-dependent cell death, and favors antiapoptotic signaling. However, PrPC activity is not restricted to post-mitotic neurons, but promotes cell proliferation and migration during embryogenesis and tissue regeneration in adult. PrPC acts as scaffold to stabilize the binding between different membrane receptors, growth factors, and basement proteins, contributing to tumorigenesis. Indeed, ablation of PrPC expression reduces cancer cell proliferation and migration and restores cell sensitivity to chemotherapy. Conversely, PrPC overexpression in cancer stem cells (CSCs) from different tumors, including gliomas-the most malignant brain tumors-is predictive for poor prognosis, and correlates with relapses. The mechanisms of the PrPC role in tumorigenesis and its molecular partners in this activity are the topic of the present review, with a particular focus on PrPC contribution to glioma CSCs multipotency, invasiveness, and tumorigenicity.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas PrPC/metabolismo , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Glioma/genética , Humanos , Invasividad Neoplásica , Regeneración Nerviosa , Proteínas PrPC/genética
6.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-30791416

RESUMEN

The aim of this review is to critically analyze promises and limitations of pharmacological inducers of autophagy against protein misfolding-associated neurodegeneration. Effective therapies against neurodegenerative disorders can be developed by regulating the "self-defense" equipment of neurons, such as autophagy. Through the degradation and recycling of the intracellular content, autophagy promotes neuron survival in conditions of trophic factor deprivation, oxidative stress, mitochondrial and lysosomal damage, or accumulation of misfolded proteins. Autophagy involves the activation of self-digestive pathways, which is different for dynamics (macro, micro and chaperone-mediated autophagy), or degraded material (mitophagy, lysophagy, aggrephagy). All neurodegenerative disorders share common pathogenic mechanisms, including the impairment of autophagic flux, which causes the inability to remove the neurotoxic oligomers of misfolded proteins. Pharmacological activation of autophagy is typically achieved by blocking the kinase activity of mammalian target of rapamycin (mTOR) enzymatic complex 1 (mTORC1), removing its autophagy suppressor activity observed under physiological conditions; acting in this way, rapamycin provided the first proof of principle that pharmacological autophagy enhancement can induce neuroprotection through the facilitation of oligomers' clearance. The demand for effective disease-modifying strategies against neurodegenerative disorders is currently stimulating the development of a wide number of novel molecules, as well as the re-evaluation of old drugs for their pro-autophagic potential.


Asunto(s)
Autofagia/efectos de los fármacos , Descubrimiento de Drogas , Neuroprotección/efectos de los fármacos , Animales , Autofagia/genética , Biomarcadores , Descubrimiento de Drogas/métodos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/genética , Lisosomas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Agregación Patológica de Proteínas , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Relación Estructura-Actividad
7.
Mol Neurobiol ; 56(3): 1957-1971, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29981054

RESUMEN

Soluble Aß oligomers are widely recognized as the toxic forms responsible for triggering AD, and Aß receptors are hypothesized to represent the first step in a neuronal cascade leading to dementia. Cellular prion protein (PrP) has been reported as a high-affinity binder of Aß oligomers. The interactions of PrP with both Aß42 and the highly toxic N-truncated pyroglutamylated species (AßpE3-42) are here investigated, at a molecular level, by means of ThT fluorescence, NMR and TEM. We demonstrate that soluble PrP binds both Aß42 and AßpE3-42, preferentially interacting with oligomeric species and delaying fibril formation. Residue level analysis of Aß42 oligomerization process reveals, for the first time, that PrP is able to differently interact with the forming oligomers, depending on the aggregation state of the starting Aß42 sample. A distinct behavior is observed for Aß42 1-30 region and C-terminal residues, suggesting that PrP protects Aß42 N-tail from entangling on the mature NMR-invisible fibril, consistent with the hypothesis that Aß42 N-tail is the locus of interaction with PrP. PrP/AßpE3-42 interactions are here reported for the first time. All interaction data are validated and complemented by cellular tests performed on Wt and PrP-silenced neuronal cell lines, clearly showing PrP dependent Aß oligomer cell internalization and toxicity. The ability of soluble PrP to compete with membrane-anchored PrP for binding to Aß oligomers bears relevance for studies of druggable pathways.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Priónicas/metabolismo , Animales , Sitios de Unión , Línea Celular , Supervivencia Celular/fisiología , Espectroscopía de Resonancia Magnética , Ratones , Unión Proteica
8.
Cell Death Dis ; 9(2): 166, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29416016

RESUMEN

According to the "gain-of-toxicity mechanism", neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological  blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response in A1 neurons, although incomplete and insufficient to grant survival; the pharmacological enhancement of this process exerts neuroprotection favoring the clearing of the internalized peptide and could represents a promising neuroprotective tool for neurodegenerative proteinopathies.


Asunto(s)
Autofagia , Espacio Intracelular/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Proteínas Priónicas/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Ácidos/metabolismo , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Vesículas Citoplasmáticas/efectos de los fármacos , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Endocitosis/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Neuroprotección/efectos de los fármacos , Permeabilidad , Proteínas Priónicas/toxicidad , Agregado de Proteínas/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Sirolimus/farmacología
9.
Exp Cell Res ; 363(1): 48-64, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29305964

RESUMEN

Cancer stem cell (CSC) self-renewing and drug resistance cause treatment failure and tumor recurrence. Osteosarcoma is an aggressive bone tumor characterized by biological and molecular heterogeneity, possibly dependent on CSCs. CSC identification in osteosarcoma and their efficient targeting are still open questions. Spontaneous canine osteosarcoma shares clinical and biological features with the human tumors, representing a model for translational studies. We characterized three CSC-enriched canine osteosarcoma cultures. In serum-free conditions, these CSC cultures grow as anchorage-independent spheroids, show mesenchymal-like properties and in vivo tumorigenicity, recapitulating the heterogeneity of the original osteosarcoma. Osteosarcoma CSCs express stem-related factors (Sox2, Oct4, CD133) and chemokine receptors and ligands (CXCR4, CXCL12) involved in tumor proliferation and self-renewal. Standard drugs for osteosarcoma treatment (doxorubicin and cisplatin) affected CSC-enriched and parental primary cultures, showing different efficacy within tumors. Moreover, metformin, a type-2 diabetes drug, significantly inhibits osteosarcoma CSC viability, migration and self-renewal and, in co-treatment with doxorubicin and cisplatin, enhances drug cytotoxicity. Collectively, we demonstrate that canine osteosarcoma primary cultures contain CSCs exhibiting distinctive sensitivity to anticancer agents, as a reliable experimental model to assay drug efficacy. We also provide proof-of-principle of metformin efficacy, alone or in combination, as pharmacological strategy to target osteosarcoma CSCs.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Metformina/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Perros , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Osteosarcoma/patología
10.
Front Cell Neurosci ; 11: 312, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29081734

RESUMEN

Glioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors. Initial studies proposed that MSCs might exert inhibitory effects on tumor development, although, to date, contrasting evidence has been provided. Different studies reported either MSC anti-tumor activity or their support to tumor growth. Here, we examined the effects of umbilical cord (UC)-MSCs on in vitro GBM-derived CSC growth, by direct cell-to-cell interaction or indirect modulation, via the release of soluble factors. We demonstrate that UC-MSCs and CSCs exhibit reciprocal tropism when co-cultured as 3D spheroids and their direct cell interaction reduces the proliferation of both cell types. Contrasting effects were obtained by UC-MSC released factors: CSCs, cultured in the presence of conditioned medium (CM) collected from UC-MSCs, increased proliferation rate through transient ERK1/2 and Akt phosphorylation/activation. Analysis of the profile of the cytokines released by UC-MSCs in the CM revealed a strong production of molecules involved in inflammation, angiogenesis, cell migration and proliferation, such as IL-8, GRO, ENA-78 and IL-6. Since CXC chemokine receptor 2 (CXCR2), a receptor shared by several of these ligands, is expressed in GBM CSCs, we evaluated its involvement in CSC proliferation induced by UC-MSC-CM. Using the CXCR2 antagonist SB225002, we observed a partial but statistically significant inhibition of CSC proliferation and migration induced by the UC-MSC-released cytokines. Conversely, CXCR2 blockade did not reduce the reciprocal tropism between CSCs and UC-MSCs grown as spheroids. In conclusion, we show that direct (cell-to-cell contact) or indirect (via the release of soluble factors) interactions between GBM CSCs and UC-MSCs in co-culture produce divergent effects on cell growth, invasion and migration, with the former mainly causing an inhibitory response and the latter a stimulatory one, involving a paracrine activation of CXCR2.

11.
Neurotox Res ; 32(3): 381-397, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28540665

RESUMEN

Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrPSc). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca++] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca++] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca++] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca++] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE2 release from glial cells. Thus, Ca++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides induce neurotoxic signals via both direct neuron interaction and glia activation through different mechanisms responsible of calcium homeostasis disruption in neurons and potentiating each other: the activation of excitotoxic pathways via NMDA receptors and the release of radical species that establish an oxidative milieu.


Asunto(s)
Cerebelo/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Priones/toxicidad , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Muerte Celular , Células Cultivadas , Cerebelo/metabolismo , Cerebelo/patología , Técnicas de Cocultivo , Espacio Intracelular/metabolismo , NADPH Oxidasas/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fragmentos de Péptidos/metabolismo , Priones/metabolismo , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Int J Biochem Cell Biol ; 79: 261-270, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27592450

RESUMEN

A wide consensus based on robust experimental evidence indicates pyroglutamylated amyloid-ß isoform (AßpE3-42) as one of the most neurotoxic peptides involved in the onset of Alzheimer's disease. Furthermore, AßpE3-42 co-oligomerized with excess of Aß1-42, produces oligomers and aggregates that are structurally distinct and far more cytotoxic than those made from Aß1-42 alone. Here, we investigate quantitatively the influence of AßpE3-42 on biophysical properties and biological activity of Aß1-42. We tested different ratios of AßpE3-42/Aß1-42 mixtures finding a correlation between the biological activity and the structural conformation and morphology of the analyzed mixtures. We find that a mixture containing 5% AßpE3-42, induces the highest disruption of intracellular calcium homeostasis and the highest neuronal toxicity. These data correlate to an high content of relaxed antiparallel ß-sheet structure and the coexistence of a population of big spheroidal aggregates together with short fibrils. Our experiments provide also evidence that AßpE3-42 causes template-induced misfolding of Aß1-42 at ratios below 33%. This means that there exists a critical concentration required to have seeding on Aß1-42 aggregation, above this threshold, the seed effect is not possible anymore and AßpE3-42 controls the total aggregation kinetics.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad , Agregado de Proteínas , Pliegue de Proteína , Ácido Pirrolidona Carboxílico/química , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Conformación Proteica en Lámina beta , Ratas , Ratas Sprague-Dawley
13.
Jpn J Vet Res ; 64(2): 101-12, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27506084

RESUMEN

Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.


Asunto(s)
Enfermedades de los Perros/metabolismo , Células Madre Neoplásicas/fisiología , Osteosarcoma/veterinaria , Animales , Biomarcadores , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Perros , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/citología
14.
Oncotarget ; 7(25): 38638-38657, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27229535

RESUMEN

Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype.


Asunto(s)
Glioblastoma/genética , Células Madre Neoplásicas/metabolismo , Proteínas Priónicas/metabolismo , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/patología , Transfección
15.
Mol Neurobiol ; 53(1): 57-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25404089

RESUMEN

Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity.


Asunto(s)
Celecoxib/farmacología , Microglía/efectos de los fármacos , Animales , Medios de Cultivo Condicionados/farmacología , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/metabolismo , Priones/metabolismo , Ratas Sprague-Dawley
16.
Int J Endocrinol ; 2014: 753524, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484899

RESUMEN

Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.

17.
Int J Pept ; 2013: 926295, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23476673

RESUMEN

Peptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1-5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions. Critical points of SST/SST receptor biology, such as signaling pathways of individual receptor subtypes, homo- and heterodimerization, trafficking, and cross-talk with growth factor receptors, have been extensively studied, although functions associated with several pathological conditions, including cancer, are still not completely unraveled. Importantly, SST exerts antiproliferative and antiangiogenic effects on cancer cells in vitro, and on experimental tumors in vivo. Moreover, SST agonists are clinically effective as antitumor agents for pituitary adenomas and gastro-pancreatic neuroendocrine tumors. However, SST receptors being expressed by tumor cells of various tumor histotypes, their pharmacological use is potentially extendible to other cancer types, although to date no significant results have been obtained. In this paper the most recent findings on the expression and functional roles of SST and SST receptors in tumor cells are discussed.

18.
Neurotox Res ; 23(4): 301-14, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22855343

RESUMEN

Prion diseases recognize, as a unique molecular trait, the misfolding of CNS-enriched prion protein (PrP(C)) into an aberrant isoform (PrP(Sc)). In this work, we characterize the in vitro toxicity of amino-terminally truncated recombinant PrP fragment (amino acids 90-231, PrP90-231), on rat cerebellar granule neurons (CGN), focusing on glutamatergic receptor activation and Ca(2+) homeostasis impairment. This recombinant fragment assumes a toxic conformation (PrP90-231(TOX)) after controlled thermal denaturation (1 h at 53 °C) acquiring structural characteristics identified in PrP(Sc) (enrichment in ß-structures, increased hydrophobicity, partial resistance to proteinase K, and aggregation in amyloid fibrils). By annexin-V binding assay, and evaluation of the percentage of fragmented and condensed nuclei, we show that treatment with PrP90-231(TOX), used in pre-fibrillar aggregation state, induces CGN apoptosis. This effect was associated with a delayed, but sustained elevation of [Ca(2+)]i. Both CGN apoptosis and [Ca(2+)]i increase were not observed using PrP90-231 in PrP(C)-like conformation. PrP90-231(TOX) effects were significantly reduced in the presence of ionotropic glutamate receptor antagonists. In particular, CGN apoptosis and [Ca(2+)]i increase were largely reduced, although not fully abolished, by pre-treatment with the NMDA antagonists APV and memantine, while the AMPA antagonist CNQX produced a lower, although still significant, effect. In conclusion, we report that CGN apoptosis induced by PrP90-231(TOX) correlates with a sustained elevation of [Ca(2+)]i mediated by the activation of NMDA and AMPA receptors.


Asunto(s)
Apoptosis/fisiología , Cerebelo/fisiología , Neuronas/fisiología , Fragmentos de Péptidos/toxicidad , Priones/toxicidad , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Apoptosis/efectos de los fármacos , Calcio/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Cerebelo/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
19.
Cell Cycle ; 12(1): 145-56, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23255107

RESUMEN

Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.


Asunto(s)
Antineoplásicos/toxicidad , Metformina/toxicidad , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antígeno AC133 , Anciano , Animales , Antígenos CD/metabolismo , Antineoplásicos/uso terapéutico , Diferenciación Celular , Supervivencia Celular/efectos de los fármacos , Femenino , Sangre Fetal/citología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Glicoproteínas/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Metformina/uso terapéutico , Ratones , Ratones SCID , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Péptidos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Trasplante Heterólogo , Células Tumorales Cultivadas
20.
Int J Mol Sci ; 13(7): 8648-8669, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22942726

RESUMEN

In several neurodegenerative diseases, such as Parkinson, Alzheimer's, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.


Asunto(s)
Enfermedades por Prión/metabolismo , Priones/metabolismo , Agregación Patológica de Proteínas/metabolismo , Animales , Humanos , Mutación Missense , Enfermedades por Prión/genética , Enfermedades por Prión/transmisión , Priones/genética , Agregación Patológica de Proteínas/genética , Estabilidad Proteica , Transporte de Proteínas , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...