Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 17(1): 140, 2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32359360

RESUMEN

BACKGROUND: Cyclooxygenase-2 (COX-2), which is rapidly upregulated by inflammation, is a key enzyme catalyzing the rate-limiting step in the synthesis of several inflammatory prostanoids. Successful positron emission tomography (PET) radioligand imaging of COX-2 in vivo could be a potentially powerful tool for assessing inflammatory response in the brain and periphery. To date, however, the development of PET radioligands for COX-2 has had limited success. METHODS: The novel PET tracer [11C]MC1 was used to examine COX-2 expression [1] in the brains of four rhesus macaques at baseline and after injection of the inflammogen lipopolysaccharide (LPS) into the right putamen, and [2] in the joints of two human participants with rheumatoid arthritis and two healthy individuals. In the primate study, two monkeys had one LPS injection, and two monkeys had a second injection 33 and 44 days, respectively, after the first LPS injection. As a comparator, COX-1 expression was measured using [11C]PS13. RESULTS: COX-2 binding, expressed as the ratio of specific to nondisplaceable uptake (BPND) of [11C]MC1, increased on day 1 post-LPS injection; no such increase in COX-1 expression, measured using [11C]PS13, was observed. The day after the second LPS injection, a brain lesion (~ 0.5 cm in diameter) with high COX-2 density and high BPND (1.8) was observed. Postmortem brain analysis at the gene transcript or protein level confirmed in vivo PET results. An incidental finding in an unrelated monkey found a line of COX-2 positivity along an incision in skull muscle, demonstrating that [11C]MC1 can localize inflammation peripheral to the brain. In patients with rheumatoid arthritis, [11C]MC1 successfully imaged upregulated COX-2 in the arthritic hand and shoulder and apparently in the brain. Uptake was blocked by celecoxib, a COX-2 preferential inhibitor. CONCLUSIONS: Taken together, these results indicate that [11C]MC1 can image and quantify COX-2 upregulation in both monkey brain after LPS-induced neuroinflammation and in human peripheral tissue with inflammation. TRIAL REGISTRATION: ClinicalTrials.gov NCT03912428. Registered April 11, 2019.


Asunto(s)
Ciclooxigenasa 2/análisis , Inflamación/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Pirimidinas , Radiofármacos , Adulto , Animales , Artritis Reumatoide/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Macaca mulatta , Persona de Mediana Edad
2.
Molecules ; 23(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400142

RESUMEN

Cyclooxygenase 2 (COX-2) is an inducible enzyme responsible for the conversion of arachidonic acid into the prostaglandins, PGG2 and PGH2. Expression of this enzyme increases in inflammation. Therefore, the development of probes for imaging COX-2 with positron emission tomography (PET) has gained interest because they could be useful for the study of inflammation in vivo, and for aiding anti-inflammatory drug development targeting COX-2. Nonetheless, effective PET radioligands are still lacking. We synthesized eleven COX-2 inhibitors based on a 2(4-methylsulfonylphenyl)pyrimidine core from which we selected three as prospective PET radioligands based on desirable factors, such as high inhibitory potency for COX-2, very low inhibitory potency for COX-1, moderate lipophilicity, and amenability to labeling with a positronemitter. These inhibitors, namely 6-methoxy-2-(4-(methylsulfonyl)phenyl-N-(thiophen-2ylmethyl)pyrimidin-4-amine (17), the 6-fluoromethyl analogue (20), and the 6-(2-fluoroethoxy) analogue (27), were labeled in useful yields and with high molar activities by treating the 6-hydroxy analogue (26) with [11C]iodomethane, [18F]2-fluorobromoethane, and [d2-18F]fluorobromomethane, respectively. [11C]17, [18F]20, and [d2-18F]27 were readily purified with HPLC and formulated for intravenous injection. These methods allow these radioligands to be produced for comparative evaluation as PET radioligands for measuring COX-2 in healthy rhesus monkey and for assessing their abilities to detect inflammation.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Tomografía de Emisión de Positrones , Pirimidinas/química , Radiofármacos , Animales , Radioisótopos de Carbono , Técnicas de Química Sintética , Inhibidores de la Ciclooxigenasa 2/farmacología , Descubrimiento de Drogas , Radioisótopos de Flúor , Humanos , Ligandos , Tomografía de Emisión de Positrones/métodos
3.
ACS Chem Neurosci ; 9(11): 2620-2627, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29792035

RESUMEN

In our preceding paper (Part 1), we identified three 1,5-bis-diaryl-1,2,4-triazole-based compounds that merited evaluation as potential positron emission tomography (PET) radioligands for selectively imaging cyclooxygenase-1 (COX-1) in monkey and human brain, namely, 1,5-bis(4-methoxyphenyl)-3-(alkoxy)-1 H-1,2,4-triazoles bearing a 3-methoxy (PS1), a 3-(2,2,2-trifluoroethoxy) (PS13), or a 3-fluoromethoxy substituent (PS2). PS1 and PS13 were labeled from phenol precursors by O-11C-methylation with [11C]iodomethane and PS2 by O-18F-fluoroalkylation with [2H2,18F]fluorobromomethane. Here, we evaluated these PET radioligands in monkey. All three radioligands gave moderately high uptake in brain, although [2H2,18F]PS2 also showed undesirable radioactivity uptake in skull. [11C]PS13 was selected for further evaluation, mainly based on more favorable brain kinetics than [11C]PS1. Pharmacological preblock experiments showed that about 55% of the radioactivity uptake in brain was specifically bound to COX-1. An index of enzyme density, VT, was well identified from serial brain scans and from the concentrations of parent radioligand in arterial plasma. In addition, VT values were stable within 80 min, suggesting that brain uptake was not contaminated by radiometabolites. [11C]PS13 successfully images and quantifies COX-1 in monkey brain, and merits further investigation for imaging COX-1 in monkey models of neuroinflammation and in healthy human subjects.


Asunto(s)
Encéfalo/diagnóstico por imagen , Ciclooxigenasa 1/metabolismo , Radiofármacos/química , Triazoles/química , Animales , Encéfalo/metabolismo , Radioisótopos de Carbono , Macaca mulatta , Tomografía de Emisión de Positrones
4.
ACS Chem Neurosci ; 9(11): 2610-2619, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29678105

RESUMEN

Cyclooxygenase-1 (COX-1) is a key enzyme in the biosynthesis of proinflammatory thromboxanes and prostaglandins and is found in glial and neuronal cells within brain. COX-1 expression is implicated in numerous neuroinflammatory states. We aim to find a direct-acting positron emission tomography (PET) radioligand for imaging COX-1 in human brain as a potential biomarker of neuroinflammation and for serving as a tool in drug development. Seventeen 3-substituted 1,5-diaryl-1 H-1,2,4-triazoles were prepared as prospective COX-1 PET radioligands. From this set, three 1,5-(4-methoxyphenyl)-1 H-1,2,4-triazoles, carrying a 3-methoxy (5), 3-(1,1,1-trifluoroethoxy) (20), or 3-fluoromethoxy substituent (6), were selected for radioligand development, based mainly on their high affinities and selectivities for inhibiting human COX-1, absence of carboxyl group, moderate computed lipophilicities, and scope for radiolabeling with carbon-11 ( t1/2 = 20.4 min) or fluorine-18 ( t1/2 = 109.8 min). Methods were developed for producing [11C]5, [11C]20, and [ d2-18F]6 from hydroxy precursors in a form ready for intravenous injection for prospective evaluation in monkey with PET.


Asunto(s)
Encéfalo/diagnóstico por imagen , Ciclooxigenasa 1/metabolismo , Radiofármacos/síntesis química , Triazoles/síntesis química , Animales , Encéfalo/metabolismo , Radioisótopos de Carbono , Inhibidores de la Ciclooxigenasa/síntesis química , Inhibidores de la Ciclooxigenasa/farmacología , Radioisótopos de Flúor , Inflamación , Macaca mulatta , Tomografía de Emisión de Positrones , Radiofármacos/farmacología , Ratas , Triazoles/farmacología
5.
J Pharmacol Exp Ther ; 344(1): 155-66, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23065135

RESUMEN

Currently, the only Food and Drug Administration-approved treatment of acute stroke is recombinant tissue plasminogen activator, which must be administered within 6 hours after stroke onset. The pan-selective σ-receptor agonist N,N'-di-o-tolyl-guanidine (o-DTG) has been shown to reduce infarct volume in rats after middle cerebral artery occlusion, even when administered 24 hours after stroke. DTG derivatives were synthesized to develop novel compounds with greater potency than o-DTG. Fluorometric Ca(2+) imaging was used in cultured cortical neurons to screen compounds for their capacity to reduce ischemia- and acidosis-evoked cytosolic Ca(2+) overload, which has been linked to stroke-induced neurodegeneration. In both assays, migration of the methyl moiety produced no significant differences, but removal of the group increased potency of the compound for inhibiting acidosis-induced [Ca(2+)](i) elevations. Chloro and bromo substitution of the methyl moiety in the meta and para positions increased potency by ≤160%, but fluoro substitutions had no effect. The most potent DTG derivative tested was N,N'-di-p-bromo-phenyl-guanidine (p-BrDPhG), which had an IC(50) of 2.2 µM in the ischemia assay, compared with 74.7 µM for o-DTG. Microglial migration assays also showed that p-BrDPhG is more potent than o-DTG in this marker for microglial activation, which is also linked to neuronal injury after stroke. Radioligand binding studies showed that p-BrDPhG is a pan-selective σ ligand. Experiments using the σ-1 receptor-selective antagonist 1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride (BD-1063) demonstrated that p-BrDPhG blocks Ca(2+) overload via σ-1 receptor activation. The study identified four compounds that may be more effective than o-DTG for the treatment of ischemic stroke at delayed time points.


Asunto(s)
Guanidina/análogos & derivados , Guanidina/uso terapéutico , Parasimpaticomiméticos/uso terapéutico , Receptores sigma/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Acidosis/inducido químicamente , Acidosis/metabolismo , Animales , Unión Competitiva/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Calcio/metabolismo , Movimiento Celular/efectos de los fármacos , Técnicas In Vitro , Ligandos , Microglía/metabolismo , Conformación Molecular , Ratas , Receptores sigma/antagonistas & inhibidores , Relación Estructura-Actividad
6.
J Org Chem ; 76(5): 1456-9, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21250705

RESUMEN

Copper-catalyzed cross-coupling reactions of amidine salts were utilized to synthesize monoarylated amidines in moderate to high yields with ligand-free conditions. DMF was the superior solvent for the N-arylation of benzamidines, while MeCN was used in the formation of N-aryl amidines in moderate to high yield.


Asunto(s)
Amidinas/síntesis química , Cobre/química , Amidinas/química , Catálisis , Estructura Molecular , Estereoisomerismo
7.
Org Lett ; 12(6): 1316-9, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20170103

RESUMEN

A copper-catalyzed cross-coupling reaction of guanidine nitrate with aryl iodides was used for the formation of N,N'-disubstituted guanidines to be used as potential therapeutics for strokes. A relatively inexpensive commercially available guanidine salt and a series of aryl iodides together with copper iodide and N,N-diethylsalicylamide as an efficient catalyst/ligand system provided a simple diarylation procedure.


Asunto(s)
Cobre/química , Guanidinas/síntesis química , Hidrocarburos Yodados/química , Catálisis , Guanidinas/química , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA