Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Molecules ; 27(3)2022 Feb 08.
Article En | MEDLINE | ID: mdl-35164409

The application of proteomics to fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) human tissues is an important development spurred on by requests from stakeholder groups in clinical fields. One objective is to complement current diagnostic methods with new specific molecular information. An important goal is to achieve adequate and consistent protein recovery across and within large-scale studies. Here, we describe development of several protocols incorporating mass spectrometry compatible detergents, including Rapigest, PPS, and ProteaseMax. Methods were applied on 4 and 15 µm thick FF tissues, and 4 µm thick FFPE tissues. We evaluated sensitivity and repeatability of the methods and found that the protocol containing Rapigest enabled detection of 630 proteins from FF tissue of 1 mm2 and 15 µm thick, whereas 498 and 297 proteins were detected with the protocols containing ProteaseMax and PPS, respectively. Surprisingly, PPS-containing buffer showed good extraction of the proteins from 4 µm thick FFPE tissue with the average of 270 protein identifications (1 mm2), similar to the results on 4 µm thick FF. Moreover, we found that temperature increases during incubation with urea on 4 µm thick FF tissue revealed a decrease in the number of identified proteins and increase in the number of the carbamylated peptides.


Kidney/chemistry , Proteome/analysis , Formaldehyde , Humans , Mass Spectrometry , Paraffin Embedding , Proteomics , Tissue Fixation
2.
Lancet Digit Health ; 4(1): e18-e26, 2022 01.
Article En | MEDLINE | ID: mdl-34794930

BACKGROUND: Histopathological assessment of transplant biopsies is currently the standard method to diagnose allograft rejection and can help guide patient management, but it is one of the most challenging areas of pathology, requiring considerable expertise, time, and effort. We aimed to analyse the utility of deep learning to preclassify histology of kidney allograft biopsies into three main broad categories (ie, normal, rejection, and other diseases) as a potential biopsy triage system focusing on transplant rejection. METHODS: We performed a retrospective, multicentre, proof-of-concept study using 5844 digital whole slide images of kidney allograft biopsies from 1948 patients. Kidney allograft biopsy samples were identified by a database search in the Departments of Pathology of the Amsterdam UMC, Amsterdam, Netherlands (1130 patients) and the University Medical Center Utrecht, Utrecht, Netherlands (717 patients). 101 consecutive kidney transplant biopsies were identified in the archive of the Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany. Convolutional neural networks (CNNs) were trained to classify allograft biopsies as normal, rejection, or other diseases. Three times cross-validation (1847 patients) and deployment on an external real-world cohort (101 patients) were used for validation. Area under the receiver operating characteristic curve (AUROC) was used as the main performance metric (the primary endpoint to assess CNN performance). FINDINGS: Serial CNNs, first classifying kidney allograft biopsies as normal (AUROC 0·87 [ten times bootstrapped CI 0·85-0·88]) and disease (0·87 [0·86-0·88]), followed by a second CNN classifying biopsies classified as disease into rejection (0·75 [0·73-0·76]) and other diseases (0·75 [0·72-0·77]), showed similar AUROC in cross-validation and deployment on independent real-world data (first CNN normal AUROC 0·83 [0·80-0·85], disease 0·83 [0·73-0·91]; second CNN rejection 0·61 [0·51-0·70], other diseases 0·61 [0·50-0·74]). A single CNN classifying biopsies as normal, rejection, or other diseases showed similar performance in cross-validation (normal AUROC 0·80 [0·73-0·84], rejection 0·76 [0·66-0·80], other diseases 0·50 [0·36-0·57]) and generalised well for normal and rejection classes in the real-world data. Visualisation techniques highlighted rejection-relevant areas of biopsies in the tubulointerstitium. INTERPRETATION: This study showed that deep learning-based classification of transplant biopsies could support pathological diagnostics of kidney allograft rejection. FUNDING: European Research Council; German Research Foundation; German Federal Ministries of Education and Research, Health, and Economic Affairs and Energy; Dutch Kidney Foundation; Human(e) AI Research Priority Area of the University of Amsterdam; and Max-Eder Programme of German Cancer Aid.


Deep Learning , Graft Rejection/diagnosis , Kidney Transplantation/classification , Biopsy , Humans , Proof of Concept Study , Retrospective Studies
3.
J Am Soc Mass Spectrom ; 32(2): 444-454, 2021 Feb 03.
Article En | MEDLINE | ID: mdl-33296200

The sensitive surfaces of many unvarnished 20th century oil paintings are of great concern for conservators and collection keepers. They may show degradation problems such as paint delamination, dripping, and soft and sticky paint and pose challenges for cleaning due to solvent sensitivity. We report for the first time the use of an innovative ambient ionization technique, surface acoustic wave nebulization-mass spectrometry (SAWN-MS), for the identification and characterization of fatty acids, dicarboxylic species and glycerides in water-sensitive modern oil paints. The composition of 10 relevant Winsor and Newton 1964-1965 paint swatches that present different degrees of water sensitivity and two paint samples from a painting by the British artist Francis Bacon were studied. Principal component analysis was used for SAWN-MS data classification. Electrospray ionization (ESI)-MS was used as control method, specifically to compare the obtained ratios of markers of interest by the two ionization techniques. The results obtained by both ESI-MS and SAWN-MS are correlated and discussed in a broader context including the information on the oil media obtained by gas chromatography (GC-MS) and also on the inorganic materials and salts characterized using a combination of methods in previous reports on samples from the same manufacturer. SAWN-MS was found to be a suitable tool for the determination of soluble organic constituents present in the paints. The method provides an indication of the level of oxidation and hydrolysis of the paint film by monitoring specific markers such as free palmitic and stearic acids, azelaic acid, monoacylglycerols, and diacylglycerols. The data showed that a higher level of water sensitivity coupled with a high level of oxidation and hydrolysis is linked to higher dicarboxylic acid, diacyl- and triacylglyceride content and lower levels of short chain fatty acids. The data obtained by SAWN-MS provided a good correlation between the monitored species and the degree of water sensitivity.

4.
J Biol Chem ; 295(13): 4194-4211, 2020 03 27.
Article En | MEDLINE | ID: mdl-32071079

Protein phosphatase 2A (PP2A) critically regulates cell signaling and is a human tumor suppressor. PP2A complexes are modulated by proteins such as cancerous inhibitor of protein phosphatase 2A (CIP2A), protein phosphatase methylesterase 1 (PME-1), and SET nuclear proto-oncogene (SET) that often are deregulated in cancers. However, how they impact cellular phosphorylation and how redundant they are in cellular regulation is poorly understood. Here, we conducted a systematic phosphoproteomics screen for phosphotargets modulated by siRNA-mediated depletion of CIP2A, PME-1, and SET (to reactivate PP2A) or the scaffolding A-subunit of PP2A (PPP2R1A) (to inhibit PP2A) in HeLa cells. We identified PP2A-modulated targets in diverse cellular pathways, including kinase signaling, cytoskeleton, RNA splicing, DNA repair, and nuclear lamina. The results indicate nonredundancy among CIP2A, PME-1, and SET in phosphotarget regulation. Notably, PP2A inhibition or reactivation affected largely distinct phosphopeptides, introducing a concept of nonoverlapping phosphatase inhibition- and activation-responsive sites (PIRS and PARS, respectively). This phenomenon is explained by the PPP2R1A inhibition impacting primarily dephosphorylated threonines, whereas PP2A reactivation results in dephosphorylation of clustered and acidophilic sites. Using comprehensive drug-sensitivity screening in PP2A-modulated cells to evaluate the functional impact of PP2A across diverse cellular pathways targeted by these drugs, we found that consistent with global phosphoproteome effects, PP2A modulations broadly affect responses to more than 200 drugs inhibiting a broad spectrum of cancer-relevant targets. These findings advance our understanding of the phosphoproteins, pharmacological responses, and cellular processes regulated by PP2A modulation and may enable the development of combination therapies.


Autoantigens/genetics , Carboxylic Ester Hydrolases/genetics , DNA-Binding Proteins/genetics , Histone Chaperones/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Protein Phosphatase 2/antagonists & inhibitors , Apoptosis/drug effects , Cell Proliferation/drug effects , Enzyme Inhibitors/chemistry , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Nuclear Lamina/drug effects , Nuclear Lamina/genetics , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphorylation/drug effects , Protein Phosphatase 2/genetics , Proteome/drug effects , Proto-Oncogene Mas , RNA, Small Interfering/genetics , Systems Biology
5.
Cell Commun Signal ; 17(1): 148, 2019 11 15.
Article En | MEDLINE | ID: mdl-31730483

BACKGROUND: Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. METHODS: We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. RESULTS: Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. CONCLUSIONS: Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer.


Cell Movement , NFATC Transcription Factors/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Cell Proliferation , Humans , Male , Mass Spectrometry , PC-3 Cells , Phosphorylation , Prostatic Neoplasms/pathology , Signal Transduction , Tumor Cells, Cultured
6.
J Am Soc Mass Spectrom ; 30(12): 2655-2669, 2019 Dec.
Article En | MEDLINE | ID: mdl-31659718

When considering incident investigations and security checks focused on energetic materials, there is an ongoing need for rapid, on-scene chemical identification. Currently applied methods are not capable of meeting all requirements, and hence, portable mass spectrometry is an interesting alternative although many instrumental challenges still exist. To be able to analyze explosives with mass spectrometry outside the traditional laboratory, suitable ambient ionization methods need to be developed. Ideally such methods are also easily implemented in the field requiring limited to no power sources, gas supplies, flow controllers, and heating devices. For this reason, the potential of SAWN (surface acoustic wave nebulization) for the ambient ionization and subsequent mass spectrometric (MS) analysis of organic explosives was investigated in this study. Excellent sensitivity was observed for nitrate-based organic explosives when operating the MS in negative mode. No dominant adduct peaks were observed for the peroxides TATP and HMTD with SAWN-MS in positive mode. The MS spectra indicate extensive fragmentation of the peroxide explosives even under the mild ionization conditions provided by SAWN. The potential of SAWN-MS was demonstrated with the correct identification of nitrate-based organic explosives in pre- and post-explosion case samples in only a fraction of the time and effort required for the regular laboratory analysis. Results show that SAWN-MS can convincingly identify intact organic energetic compounds and mixtures but that sensitivity is not always sufficient to detect traces of explosives in post-explosion residues.

7.
Mass Spectrom Rev ; 38(4-5): 403-441, 2019 08.
Article En | MEDLINE | ID: mdl-31390493

Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.


Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods , Animals , Biopsy , Chromatography, Liquid/methods , Humans , Proteins/analysis , Proteolysis , Tissue Preservation/methods
8.
Sci Rep ; 9(1): 6128, 2019 Apr 16.
Article En | MEDLINE | ID: mdl-30992484

In many applications where small, similar-sized droplets are needed, ultrasonic nebulizers are employed. Little is known about the mechanism of nebulization, for example about what determines the median droplet size. Even less understood, is the droplet size distribution, which is often simply fitted with a log-normal distribution or assumed to be very narrow. We perform the first systematic study of droplet size distributions for different nebulizer technologies, showing that these distributions can be very well fitted with distributions found for sprays, where the size distribution is completely determined by the corrugation of ligaments and the distribution of ligament sizes. In our case, breakup is believed to be due to pinch-off of Faraday instabilities. The droplet size distribution is then set by the distribution of wavelengths of the standing capillary waves and the roughness of the pinch-off ligaments. We show that different nebulizer technologies produce different size distributions, which we relate to (variation in) wavelengths of the waves that contribute to the droplet formation. We further show that the median droplet size scales with the capillary wavelength, with a proportionality constant that depends only slightly on the type of nebulizer, despite order-of-magnitude differences in other parameters.

9.
Cell Biol Toxicol ; 35(4): 293-332, 2019 08.
Article En | MEDLINE | ID: mdl-30900145

Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.


Melanoma/pathology , Melanoma/therapy , Translational Research, Biomedical/methods , Biological Specimen Banks/trends , Biomarkers, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Humans , Imidazoles/pharmacology , Melanoma/metabolism , Neoplasm Staging , Oximes/pharmacology , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Pyridones/pharmacology , Pyrimidinones/pharmacology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Melanoma, Cutaneous Malignant
10.
Bioinformatics ; 34(15): 2690-2692, 2018 08 01.
Article En | MEDLINE | ID: mdl-29596608

Motivation: Mass spectrometry combined with enrichment strategies for phosphorylated peptides has been successfully employed for two decades to identify sites of phosphorylation. However, unambiguous phosphosite assignment is considered challenging. Given that site-specific phosphorylation events function as different molecular switches, validation of phosphorylation sites is of utmost importance. In our earlier study we developed a method based on simulated phosphopeptide spectral libraries, which enables highly sensitive and accurate phosphosite assignments. To promote more widespread use of this method, we here introduce a software implementation with improved usability and performance. Results: We present SimPhospho, a fast and user-friendly tool for accurate simulation of phosphopeptide tandem mass spectra. Simulated phosphopeptide spectral libraries are used to validate and supplement database search results, with a goal to improve reliable phosphoproteome identification and reporting. The presented program can be easily used together with the Trans-Proteomic Pipeline and integrated in a phosphoproteomics data analysis workflow. Availability and implementation: SimPhospho is open source and it is available for Windows, Linux and Mac operating systems. The software and its user's manual with detailed description of data analysis as well as test data can be found at https://sourceforge.net/projects/simphospho/. Supplementary information: Supplementary data are available at Bioinformatics online.


Phosphopeptides/analysis , Proteomics/methods , Software , Tandem Mass Spectrometry/methods , Databases, Protein , Phosphorylation , Protein Processing, Post-Translational
11.
Anal Chem ; 89(20): 10769-10775, 2017 10 17.
Article En | MEDLINE | ID: mdl-28910098

Human tissues are an important link between organ-specific spatial molecular information, patient pathology, and patient treatment options. However, patient tissues are uniquely obtained by time and location, and limited in their availability and size. Currently, little knowledge exists about appropriate and simplified protocols for routine MS-based analysis of the various types and sizes of tissues. Following standard procedures used in pathology, we selected small fresh frozen uterine tissue samples to investigate how the tissue preparation protocol affected the subsequent proteomics analysis. First, we observed that protein extraction with 0.1% SDS followed by extraction with a 30% ACN/urea resulted in a decrease in the number of identified proteins, when compared to extraction with 30% ACN/urea only. The decrease in the number of proteins was approximately 55% and 20%, for 10 and 16 µm thick tissue, respectively. Interestingly, the relative abundance of the proteins shared between the two methods was higher when SDS/ACN/urea was used, compared to the 30% ACN/urea extraction, indicating the role of SDS to be beneficial for protein solubility. Second, the influence of tissue thickness was investigated by comparing the results obtained for 10, 16, and 20 µm thick (1 mm2) tissue using urea/30% ACN. We observed an increase in the number of identified proteins and corresponding quantity with an increase in the tissue thickness. Finally, by analyzing very small amounts of tissues (∼0.2 mm2) of 10, 16, and 20 µm thickness, we observed that the increase in tissue thickness resulted in a higher number of protein identifications and corresponding quantitative values.


Proteins/analysis , Tandem Mass Spectrometry/methods , Uterus/metabolism , Acetonitriles/chemistry , Chemical Fractionation , Chromatography, High Pressure Liquid , Female , Freezing , Humans , Nanotechnology , Proteins/isolation & purification , Proteomics , Reproducibility of Results , Sodium Dodecyl Sulfate/chemistry , Solubility , Urea/chemistry
12.
J Am Soc Mass Spectrom ; 28(10): 2108-2116, 2017 10.
Article En | MEDLINE | ID: mdl-28660500

Surface acoustic wave nebulisation (SAWN) mass spectrometry (MS) is a method to generate gaseous ions compatible with direct MS of minute samples at femtomole sensitivity. To perform SAWN, acoustic waves are propagated through a LiNbO3 sampling chip, and are conducted to the liquid sample, which ultimately leads to the generation of a fine mist containing droplets of nanometre to micrometre diameter. Through fission and evaporation, the droplets undergo a phase change from liquid to gaseous analyte ions in a non-destructive manner. We have developed SAWN technology for the characterisation of organic colourants in textiles. It generates electrospray-ionisation-like ions in a non-destructive manner during ionisation, as can be observed by the unmodified chemical structure. The sample size is decreased by tenfold to 1000-fold when compared with currently used liquid chromatography-MS methods, with equal or better sensitivity. This work underscores SAWN-MS as an ideal tool for molecular analysis of art objects as it is non-destructive, is rapid, involves minimally invasive sampling and is more sensitive than current MS-based methods. Graphical Abstract ᅟ.

13.
J Proteome Res ; 16(7): 2457-2471, 2017 07 07.
Article En | MEDLINE | ID: mdl-28516784

Identification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system. Within 5 min extensive intracellular cross-linking was detected, while intracellular cross-linking in a Gram-negative species, Escherichia coli, was still undetectable after 30 min, in agreement with the low permeability in this organism for lipophilic compounds like BAMG. We were able to identify 82 unique interprotein cross-linked peptides with <1% false discovery rate by mass spectrometry and genome-wide database searching. Nearly 60% of the interprotein cross-links occur in assemblies involved in transcription and translation. Several of these interactions are new, and we identified a binding site between the δ and ß' subunit of RNA polymerase close to the downstream DNA channel, providing a clue into how δ might regulate promoter selectivity and promote RNA polymerase recycling. Our methodology opens new avenues to investigate the functional dynamic organization of complex protein assemblies involved in bacterial growth. Data are available via ProteomeXchange with identifier PXD006287.


Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Glutarates/chemistry , Protein Interaction Mapping/methods , Succinimides/chemistry , Amino Acid Sequence , Bacillus subtilis/chemistry , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cross-Linking Reagents/chemistry , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Organelle Biogenesis , Protein Binding , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Species Specificity , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
14.
J Chromatogr A ; 1491: 36-42, 2017 Mar 31.
Article En | MEDLINE | ID: mdl-28242052

A critical step in the bottom-up characterization of proteomes is the conversion of proteins to peptides, by means of endoprotease digestion. Nowadays this method typically uses overnight digestion and as such represents a considerable bottleneck for high-throughput analysis. This report describes protein digestion using an immobilized-enzyme reactor (IMER), which enables accelerated digestion times that are completed within seconds to minutes. For rapid digestion to occur, a cyclic-olefin-copolymer microfluidic reactor was constructed containing trypsin immobilized on a polymer monolithic material through a 2-vinyl-4,4-dimethylazlactone linker. The IMER was applied for the rapid offline digestion of both singular protein standards and a complex protein mixture prior to liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) analysis. The effects of protein concentration and residence time in the IMER were assessed for protein standards of varying molecular weight between 11 and 240kDa. Compared to traditional in-solution digestion, IMER-facilitated protein digestion at room temperature for 5min yielded similar results in terms of sequence coverage and number of identified peptides. Good repeatability was demonstrated with a relative standard deviation of 6% for protein-sequence coverage. The potential of the IMER was also demonstrated for a complex protein mixture in the analysis of dried blood spots. Compared to a traditional workflow a similar number of proteins could be identified, while reducing the total analysis time from 22.5h to 4h and importantly omitting the sample-pre-treatment steps (denaturation, reduction, and alkylation). The identified proteins from two workflows showed similar distributions in terms of molecular weight and hydrophobic character.


Blood Proteins/analysis , Cycloparaffins/chemistry , Dried Blood Spot Testing , Enzymes, Immobilized , Microfluidic Analytical Techniques/instrumentation , Polymers/chemistry , Dried Blood Spot Testing/instrumentation , Dried Blood Spot Testing/methods , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans
15.
Mol Cell Proteomics ; 15(10): 3203-3219, 2016 10.
Article En | MEDLINE | ID: mdl-27486199

Influenza A viruses cause infections in the human respiratory tract and give rise to annual seasonal outbreaks, as well as more rarely dreaded pandemics. Influenza A viruses become quickly resistant to the virus-directed antiviral treatments, which are the current main treatment options. A promising alternative approach is to target host cell factors that are exploited by influenza viruses. To this end, we characterized the phosphoproteome of influenza A virus infected primary human macrophages to elucidate the intracellular signaling pathways and critical host factors activated upon influenza infection. We identified 1675 phosphoproteins, 4004 phosphopeptides and 4146 nonredundant phosphosites. The phosphorylation of 1113 proteins (66%) was regulated upon infection, highlighting the importance of such global phosphoproteomic profiling in primary cells. Notably, 285 of the identified phosphorylation sites have not been previously described in publicly available phosphorylation databases, despite many published large-scale phosphoproteome studies using human and mouse cell lines. Systematic bioinformatics analysis of the phosphoproteome data indicated that the phosphorylation of proteins involved in the ubiquitin/proteasome pathway (such as TRIM22 and TRIM25) and antiviral responses (such as MAVS) changed in infected macrophages. Proteins known to play roles in small GTPase-, mitogen-activated protein kinase-, and cyclin-dependent kinase- signaling were also regulated by phosphorylation upon infection. In particular, the influenza infection had a major influence on the phosphorylation profiles of a large number of cyclin-dependent kinase substrates. Functional studies using cyclin-dependent kinase inhibitors showed that the cyclin-dependent kinase activity is required for efficient viral replication and for activation of the host antiviral responses. In addition, we show that cyclin-dependent kinase inhibitors protect IAV-infected mice from death. In conclusion, we provide the first comprehensive phosphoproteome characterization of influenza A virus infection in primary human macrophages, and provide evidence that cyclin-dependent kinases represent potential therapeutic targets for more effective treatment of influenza infections.


Influenza A virus/pathogenicity , Influenza, Human/metabolism , Macrophages/virology , Phosphoproteins/analysis , Proteomics/methods , Animals , Computational Biology/methods , Cyclin-Dependent Kinases/metabolism , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Macrophages/metabolism , Mice , Signal Transduction
16.
Oncotarget ; 7(28): 43220-43238, 2016 Jul 12.
Article En | MEDLINE | ID: mdl-27281612

Tumorigenesis is a multistep process involving co-operation between several deregulated oncoproteins. In this study, we unravel previously unrecognized interactions and crosstalk between Pim kinases and the Notch signaling pathway, with implications for both breast and prostate cancer. We identify Notch1 and Notch3, but not Notch2, as novel Pim substrates and demonstrate that for Notch1, the serine residue 2152 is phosphorylated by all three Pim family kinases. This target site is located in the second nuclear localization sequence (NLS) of the Notch1 intracellular domain (N1ICD), and is shown to be important for both nuclear localization and transcriptional activity of N1ICD. Phosphorylation-dependent stimulation of Notch1 signaling promotes migration of prostate cancer cells, balances glucose metabolism in breast cancer cells, and supports in vivo growth of both types of cancer cells on chick embryo chorioallantoic membranes. Furthermore, Pim-induced growth of orthotopic prostate xenografts in mice is associated with enhanced nuclear Notch1 activity. Finally, simultaneous inhibition of Pim and Notch abrogates the cellular responses more efficiently than individual treatments, opening up new vistas for combinatorial cancer therapy.


Breast Neoplasms/pathology , Carcinogenesis/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-pim-1/metabolism , Receptor, Notch1/metabolism , Signal Transduction , Animals , Cell Movement , Chick Embryo , Female , Humans , MCF-7 Cells , Male , Mice , Phosphorylation , Receptor, Notch2/metabolism , Receptor, Notch3/metabolism , Serine/metabolism , Xenograft Model Antitumor Assays
17.
PLoS One ; 11(4): e0153294, 2016.
Article En | MEDLINE | ID: mdl-27070903

Recent metagenomic studies have demonstrated that the overall functional potential of the intestinal microbiome is rather conserved between healthy individuals. Here we assessed the biological processes undertaken in-vivo by microbes and the host in the intestinal tract by conducting a metaproteome analysis from a total of 48 faecal samples of 16 healthy adults participating in a placebo-controlled probiotic intervention trial. Half of the subjects received placebo and the other half consumed Lactobacillus rhamnosus GG for three weeks (1010 cfu per day). Faecal samples were collected just before and at the end of the consumption phase as well as after a three-week follow-up period, and were processed for microbial composition and metaproteome analysis. A common core of shared microbial protein functions could be identified in all subjects. Furthermore, we observed marked differences in expressed proteins between subjects that resulted in the definition of a stable and personalized microbiome both at the mass-spectrometry-based proteome level and the functional level based on the KEGG pathway analysis. No significant changes in the metaproteome were attributable to the probiotic intervention. A detailed taxonomic assignment of peptides and comparison to phylogenetic microarray data made it possible to evaluate the activity of the main phyla as well as key species, including Faecalibacterium prausnitzii. Several correlations were identified between human and bacterial proteins. Proteins of the human host accounted for approximately 14% of the identified metaproteome and displayed variations both between and within individuals. The individually different human intestinal proteomes point to personalized host-microbiota interactions. Our findings indicate that analysis of the intestinal metaproteome can complement gene-based analysis and contributes to a thorough understanding of the activities of the microbiome and the relevant pathways in health and disease.


Gastrointestinal Microbiome , Probiotics/therapeutic use , Adult , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cohort Studies , Double-Blind Method , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Genome, Bacterial , Humans , Longitudinal Studies , Male , Middle Aged , Peptide Mapping , Phylogeny , Precision Medicine , Proteomics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Young Adult
18.
J Proteomics ; 133: 66-75, 2016 Feb 05.
Article En | MEDLINE | ID: mdl-26691839

Estrogens are suggested to lower the risk of developing metabolic syndrome in both sexes. In this study, we investigated how the increased circulating estrogen-to-androgen ratio (E/A) alters liver lipid metabolism in males. The cytochrome P450 aromatase (P450arom) is an enzyme converting androgens to estrogens. Male mice overexpressing human aromatase enzyme (AROM+ mice), and thus have high circulating E/A, were used as a model in this study. Proteomics and gene expression analyses indicated an increase in the peroxisomal ß-oxidation in the liver of AROM+ mice as compared with their wild type littermates. Correspondingly, metabolomic analysis revealed a decrease in the amount of phosphatidylcholines with long-chain fatty acids in the plasma. With interest we noted that the expression of Cyp4a12a enzyme, which specifically metabolizes arachidonic acid (AA) to 20-hydroxy AA, was dramatically decreased in the AROM+ liver. As a consequence, increased amounts of phospholipids having AA as a fatty acid tail were detected in the plasma of the AROM+ mice. Overall, these observations demonstrate that high circulating E/A in males is linked to indicators of higher peroxisomal ß-oxidation and lower AA metabolism in the liver. Furthermore, the plasma phospholipid profile reflects the changes in the liver lipid metabolism.


Androgens/blood , Aromatase/metabolism , Estrogens/blood , Lipid Metabolism , Liver/metabolism , Peroxisomes/metabolism , Androgens/genetics , Animals , Aromatase/genetics , Estrogens/genetics , Humans , Male , Mice , Mice, Transgenic , Peroxisomes/genetics , Phosphatidylcholines/biosynthesis , Phosphatidylcholines/genetics
19.
J Proteome Res ; 15(2): 457-67, 2016 Feb 05.
Article En | MEDLINE | ID: mdl-26689635

The filamentous fungus Trichoderma reesei is used for industrial production of secreted enzymes including carbohydrate active enzymes, such as cellulases and hemicellulases. The production of many of these enzymes by T. reesei is influenced by the carbon source it grows on, where the regulation system controlling hydrolase genes involves various signaling pathways. T. reesei was cultivated in the presence of sorbitol, a carbon source that does not induce the production of cellulases and hemicellulases, and then exposed to either sophorose or spent-grain extract, which are efficient inducers of the enzyme production. Specific changes at phosphorylation sites were investigated in relation to the production of cellulases and hemicellulases using an MS-based framework. Proteome-wide phosphorylation following carbon source exchange was investigated in the early stages of induction: 0, 2, 5, and 10 min. The workflow involved sequential trypsin digestion, TiO2 enrichment, and MS analysis using a Q Exactive mass spectrometer. We report on the identification and quantitation of 1721 phosphorylation sites. Investigation of the data revealed a complex signaling network activated upon induction involving components related to light-mediated cellulase induction, osmoregulation, and carbon sensing. Changes in protein phosphorylation were detected in the glycolytic pathway, suggesting an inhibition of glucose catabolism at 10 min after the addition of sophorose and as early as 2 min after the addition of spent-grain extract. Differential phosphorylation of factors related to carbon storage, intracellular trafficking, cytoskeleton, and cellulase gene regulation were also observed.


Fungal Proteins/metabolism , Phosphoproteins/metabolism , Proteome/metabolism , Proteomics/methods , Signal Transduction , Trichoderma/metabolism , Binding Sites , Cellulases/metabolism , Chromatography, Liquid , Glucans/metabolism , Glycolysis , Glycoside Hydrolases/metabolism , Hydrolysis , Phosphorylation , Sorbitol/metabolism , Tandem Mass Spectrometry
20.
J Proteome Res ; 15(1): 266-79, 2016 Jan 04.
Article En | MEDLINE | ID: mdl-26652789

The cyanobacterium Synechocystis sp. PCC 6803 (S. 6803) is a well-established model species in oxygenic photosynthesis research and a potential host for biotechnological applications. Despite recent advances in genome sequencing and microarray techniques applied in systems biology, quantitative proteomics approaches with corresponding accuracy and depth are scarce for S. 6803. In this study, we developed a protocol to screen changes in the expression of 106 proteins representing central metabolic pathways in S. 6803 with a targeted mass spectrometry method, selected reaction monitoring (SRM). We evaluated the response to the exposure of both short- and long-term iron deprivation. The experimental setup enabled the relative quantification of 96 proteins, with 87 and 92 proteins showing adjusted p-values <0.01 under short- and long-term iron deficiency, respectively. The high sensitivity of the SRM method for S. 6803 was demonstrated by providing quantitative data for altogether 64 proteins that previously could not be detected with the classical data-dependent MS approach under similar conditions. This highlights the effectiveness of SRM for quantification and extends the analytical capability to low-abundance proteins in unfractionated samples of S. 6803. The SRM assays and other generated information are now publicly available via PASSEL and Panorama.


Bacterial Proteins/chemistry , Iron/metabolism , Proteome/chemistry , Proteomics/methods , Synechocystis/metabolism , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Chromatography, High Pressure Liquid , Photosynthesis , Proteome/isolation & purification , Proteome/metabolism , Tandem Mass Spectrometry
...