Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Pest Manag Sci ; 80(6): 2851-2859, 2024 Jun.
Article En | MEDLINE | ID: mdl-38339817

BACKGROUND: Microbial insecticides are an important weapon in insect pest management, but their use is still relatively limited. One approach for increasing their efficacy and use could be to combine different pathogens to increase pest mortality. However, little is known about whether increasing pathogen diversity will improve pest management. Here, we investigated the compatibility of two pathogens for the management of the cabbage looper, Trichoplusia ni, T. ni nucleopolyhedrovirus (TniSNPV) and the entomopathogenic fungus Beauveria bassiana, on two crops, tomato and broccoli. The pathogens were applied to individual plants using ultra low volume sprays, alone or in combination, either synchronously or asynchronously. Healthy third-instar T. ni larvae were introduced to the plants before application and collected by destructive sampling 24 h after the last pathogen application. RESULTS: Combined applications did not result in an increase in larval mortality compared to TniSNPV alone, although mortality was generally high. B. bassiana was considerably less effective on broccoli compared to tomato. In both the combined treatments, virus-induced mortality was approximately 50% lower when applied together with the fungus, while fungus-induced mortality was not affected by the virus, even when the virus was introduced 24 h before the fungus. CONCLUSION: While our results suggest that applying this combination of entomopathogens would not be beneficial for pest management, this study illustrates the need to consider the target crop as an important driver of the efficacy of both single and mixed pathogen applications in the field. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Beauveria , Brassica , Larva , Moths , Pest Control, Biological , Solanum lycopersicum , Beauveria/physiology , Animals , Moths/virology , Moths/microbiology , Moths/growth & development , Brassica/microbiology , Pest Control, Biological/methods , Larva/microbiology , Larva/growth & development , Larva/virology , Solanum lycopersicum/microbiology , Nucleopolyhedroviruses/physiology , Crops, Agricultural
2.
Ecology ; 104(10): e4159, 2023 10.
Article En | MEDLINE | ID: mdl-37632353

Understanding how climate warming will influence species interactions is a key question in ecology and predicting changes in the prevalence of disease outbreaks is particularly challenging. Ectotherms are likely to be more influenced by climatic changes as temperature governs their growth, feeding, development, and behavior. We test the hypothesis that pathogen transmission and host mortality will increase at warmer temperatures using a cyclic forest insect, the western tent caterpillar (WTC), Malacosoma californicum pluviale, and its baculovirus. The virus causes population declines at peak host density. WTC are gregarious and clustering is predicted to increase the risk of within family infection; however, how temperature influences this has not been examined. We investigated the impact of temperature on different components of the transmission process in order to pinpoint the possible mechanisms involved. In the laboratory, leaf consumption increased linearly with rising temperature between 15 and 30°C. Insects died more rapidly from virus infection as temperature increased, but this did not translate into differences in the production of viral transmission stages. To examine the influence of temperature on virus transmission, we created a temperature difference between two greenhouses containing potted red alder trees, Alnus rubra. The cooler greenhouse (mean 19.5°C) was roughly similar to ambient temperatures in the field, while the warmer greenhouse was 10°C higher (mean 29°C). As predicted, both larval movement and feeding were higher at the warmer temperature, while the likelihood of the preinfected, inoculum larvae dying on the tents was twice as high in the cooler greenhouse. This resulted in increased virus mortality and a higher transmission parameter under cooler conditions. Therefore, we suggest that, contrary to our prediction, the reduced movement of infected larvae at colder temperatures increased the risk of infection in these gregarious insects and had a greater impact on virus transmission than the increased activity of the susceptible larvae in warmer conditions. Long-term population data from the field, however, show no relationship between temperature and infection levels, suggesting that local changes in virus transmission might not scale up to population infection levels.


Lepidoptera , Animals , Temperature , Larva , Climate , Forests
3.
Ecol Evol ; 12(3): e8707, 2022 Mar.
Article En | MEDLINE | ID: mdl-35342581

Infection by pathogens is strongly affected by the diet or condition of the prospective host. Studies that examine the impact of diet have mainly focused on single pathogens; however, co-infections within a single host are thought to be common. Different pathogen groups might respond differently to resource availability and diverse infections could increase the costs of host defense, meaning the outcome of mixed infections under varying dietary regimes is likely to be hard to predict. We used the generalist cabbage looper, Trichoplusia ni and two of its pathogens, the DNA virus T. ni nucleopolyhedrovirus (TniSNPV) and the entomopathogenic fungus, Beauveria bassiana to examine how nutrient reduction affected the outcome of mixed pathogen infection. We challenged insects with a low or high effective dose of virus, alone or combined with a single dose of fungus. We manipulated food availability after pathogen challenge by diluting artificial diet with cellulose, a non-nutritious bulking agent, and examined its impact on host and pathogen fitness. Reducing diet quantity did not alter overall or pathogen-specific mortality. In all cases, TniSNPV-induced mortality was negatively affected by fungus challenge. Similarly, B. bassiana-induced mortality was negatively affected by TniSNPV challenge, but only at the higher virus dose. Dietary dilution mainly affected B. bassiana speed of kill when mixed with a high dose of TniSNPV, with an increase in the duration of fungal infection when cellulose was low (high quantity). One pathogen dominated the production of transmission stages in the cadavers and co-infection did not affect the yield of either pathogen. There was no evidence that co-infections were more costly to the survivors of pathogen challenge. In conclusion, dietary dilution did not determine the outcome of mixed pathogen infection, but it had more subtle effects, that differed between the two pathogens and could potentially alter pathogen recycling and host-pathogen dynamics.

4.
J Anim Ecol ; 90(6): 1560-1569, 2021 06.
Article En | MEDLINE | ID: mdl-33724454

It is becoming increasingly apparent that trans-generational immune priming (i.e. the transfer of the parental immunological experience to its progeny resulting in offspring protection from pathogens that persist across generations) is a common phenomenon not only in vertebrates, but also invertebrates. Likewise, it is known that covert pathogenic infections may become 'triggered' into an overt infection by various stimuli, including exposure to heterologous infections. Yet, rarely have both phenomena been explored in parallel. Using as a model system the African armyworm Spodoptera exempta, an eruptive agricultural pest and its endemic dsDNA virus (Spodoptera exempta nucleopolyhedrovirus, SpexNPV), the aim of this study was to explore the impact of parental inoculating-dose on trans-generational pathogen transmission and immune priming (in its broadest sense). Larvae were orally challenged with one of five doses of SpexNPV and survivors from these treatments were mated and their offspring monitored for viral mortality. Offspring from parents challenged with low viral doses showed evidence of 'immune priming' (i.e. enhanced survival following SpexNPV challenge); in contrast, offspring from parents challenged with higher viral doses exhibited greater susceptibility to viral challenge. Most offspring larvae died of the virus they were orally challenged with; in contrast, most offspring from parents that had been challenged with the highest doses were killed by the vertically transmitted virus (90%) and not the challenge virus. These results demonstrate that the outcome of a potentially lethal virus challenge is critically dependent on the level of exposure to virus in the parental generation-either increasing resistance at very low parental viral doses (consistent with trans-generational immune priming) or increasing susceptibility at higher parental doses (consistent with virus triggering). We discuss the implications of these findings for understanding both natural epizootics of baculoviruses and for using them as biological control agents.


Nucleopolyhedroviruses , Animals , Invertebrates , Larva , Reproduction , Spodoptera
5.
J Invertebr Pathol ; 179: 107534, 2021 02.
Article En | MEDLINE | ID: mdl-33428919

Autodissemination techniques can potentially be used to distribute insecticides, including microbial insecticides, to cryptic pests. This approach is reliant on the target insect either passing the pathogen passively to other insects or the pathogen cycling within the population after the initial host dies. Here we examine, in small scale experiments, whether male Agriotes obscurus click beetles passively transmit the spores of the fungus Metarhizium brunneum directly, or indirectly via the environment, and whether this is influenced by exposure to synthetic female pheromone. We found that the beetles did not avoid M. brunneum spores and that this behaviour was not affected by pheromone. Exposure to pheromone increased beetle movement and uptake of spores, but this did not result in an increase in infected beetles under our conditions. Beetles were able to transfer spores at high levels via environmental contamination. However, contamination of the environment declined rapidly after exposure to the spores. The results are discussed in the context of developing an autodissemination strategy for click beetles.


Coleoptera/physiology , Metarhizium/physiology , Sex Attractants/pharmacology , Animals , Coleoptera/microbiology , Female , Male , Pest Control, Biological
6.
Insects ; 11(11)2020 Oct 26.
Article En | MEDLINE | ID: mdl-33114520

Elaterid female sex pheromone, while currently used for monitoring the adult life stage (click beetle), has only recently been explored as a potential management tool. Consequently, there is little understanding of how abiotic and biotic conditions influence the response of click beetles to the pheromone. We examined whether the response of male Agriotes obscurus L. (Coleoptera: Elateridae) beetles to a cellulose-based formulation of female sex pheromone ('pheromone granules') is influenced by air movement, presence of visible light, and month of beetle collection. In addition, we investigated the distance from which beetles were attracted to the pheromone granules. Click beetle response was determined by measuring movement parameters in free-walking arena experiments. The response to pheromone was not affected by the presence or absence of visible light. We found that beetles collected earlier in the season had increased activity and interaction with pheromone under moving air conditions, compared to beetles collected later. When controlling for storage time, we confirmed that individuals collected in May were less active than beetles collected in March and April. In the field, beetles were recaptured from up to 14 m away from a pheromone granule source, with over 50% being recovered within 4.4 h from a distance of 7 m or less. Understanding how abiotic and biotic factors affect pest response to pheromone can lead to more effective and novel uses of pheromone-based management strategies.

7.
J Evol Biol ; 33(11): 1558-1566, 2020 11.
Article En | MEDLINE | ID: mdl-32780527

Trade-offs in the time and energy allocated to different functions, such as reproductive activities, can be driven by alterations in condition which reduce resources, often in response to extrinsic factors such as pathogens or parasites. When individuals are challenged by a pathogen, they may either reduce reproduction as a cost of increasing defence mechanisms or, alternatively, modify reproductive activities so as to increase fecundity thereby minimizing the fitness costs of earlier death, a behaviour consistent with the terminal investment hypothesis (TIH). The TIH predicts that individuals with decreased likelihood of future reproduction will maximize current reproductive effort, which may include shifts in reproductive timing. We examined how wild, adult female click beetles (Agriotes obscurus) responded after exposure to the fungal pathogen Metarhizium brunneum. Field-collected beetles exposed to a high concentration of M. brunneum died earlier and in greater numbers than those exposed to a low concentration. Using a multivariate approach, we examined the impact of pathogen challenge on lifespan and a suite of reproductive traits. Stepdown regression analysis showed that only female lifespan differed among the fungal treatments. Fungal-induced reductions in lifespan drove changes in the reproductive schedule, characterized by a decrease in preoviposition period. Moving the start of egg laying forward allowed the females to offset the costs of a shortened lifespan. These changes suggest that there is a threshold for terminal investment, which is dependent on strength of the survival threat. From an applied perspective, our findings imply that exposing adult click beetles to M. brunneum to reduce their population density might not succeed and is an approach that needs further investigation.


Coleoptera/physiology , Host-Pathogen Interactions , Life History Traits , Oviposition , Animals , Coleoptera/microbiology , Female , Fertility , Longevity , Metarhizium
8.
J Invertebr Pathol ; 167: 107232, 2019 10.
Article En | MEDLINE | ID: mdl-31445007

Understanding how hosts respond to pathogen attack is crucial to disease management. The response of a host can be particularly important if hosts have to defend against multiple pathogens which could either benefit from or be suppressed by prior pathogen exposure. Insect defence against viruses is less well understood than responses to other entomopathogens and much of the information available relates to in vitro studies and model systems. Baculoviruses are natural pathogens of insects, particularly Lepidoptera, and have been well-studied in terms of their ecology, pest control potential and molecular biology. In order to examine how an insect reacts to baculovirus challenge, we measured components of the cellular and humoral immune response of the cabbage looper Trichoplusia ni to Trichoplusia ni SNPV, a narrow-host range nucleopolyhedrovirus (NPV), over four doses and three times after pathogen challenge (18, 42 and 90 h). We found that total haemocyte numbers peaked at 42 h post-exposure at all doses, and declined linearly with increasing dose after the 18 h time point. Two immune-related enzymes, phenoloxidase (PO) and FAD-glucose dehydrogenase (GLD), showed very different responses. PO levels were lowest at the 42 h time point and were not influenced by virus dose when each time point was examined separately. GLD levels declined over time but they interacted with virus dose in a non-linear manner, such that there was an increase in levels at intermediate virus doses after 18 h, no effect at 42 h, and then declined as infection progressed at 90 h post-infection. These data suggest that baculoviruses can rapidly infect haemocytes (or cause a reduction in their numbers) in a dose-dependent manner once the infection is systemic, likely reducing the ability of the host to counter subsequent infections. However, the data do not support a direct role for PO in defence against baculoviruses. Whether GLD plays a role in virus defence is still unclear.


Dose-Response Relationship, Immunologic , Moths/virology , Virus Diseases/immunology , Animals , Biological Assay , Glycerolphosphate Dehydrogenase/metabolism , Immunity, Cellular , Immunity, Humoral , Larva/immunology , Larva/virology , Monophenol Monooxygenase/metabolism , Moths/immunology , Nucleopolyhedroviruses/immunology
9.
PLoS One ; 14(2): e0209937, 2019.
Article En | MEDLINE | ID: mdl-30735528

Spodoptera exempta nucleopolyhedrovirus (SpexNPV) is a viral pathogen of the African armyworm, Spodoptera exempta (Lepidoptera: Noctuidae), a significant agricultural pest of cereal crops in Africa. SpexNPV has been evaluated as a potential insecticide for control of this pest and has served as the subject of research on baculovirus pathology and transmission. Occlusion bodies (OBs) of SpexNPV isolate 244.1 were examined, and the nucleotide sequence of the genome was determined and characterized. SpexNPV-244.1 OBs consisted of irregular polyhedra with a size and appearance typical for alphabaculoviruses. Virions within the polyhedra contained 1-8 nucleocapsids per unit envelope. The SpexNPV-244.1 genome was comprised of a 129,528 bp circular sequence, in which 139 ORFs were annotated. Five homologous regions (hrs) consisting of a variable number of 28-bp imperfect palindromes were identified in the genome. The genome sequence contained the 38 core genes of family Baculoviridae, as well as three ORFs unique to the SpexNPV sequence and one ORF that was apparently acquired by horizontal gene transfer with a betabaculovirus ancestor. Phylogenetic inference with core gene amino acid sequence alignments placed SpexNPV-244.1 in a lineage containing alphabaculoviruses of Spodoptera frugiperda and Spodopotera exigua which in turn is part of a larger group of alphabaculoviruses from the subfamily Noctuinae in the lepidopteran family Noctuidae. Kimura-2-parameter pairwise nucleotide distances indicated that SpexNPV-244.1 represented a different and previously unlisted species in the genus Alphabaculovirus. Gene parity plots indicated that the gene order of SpexNPV-244.l was extensively collinear with that of Spodoptera exigua NPV (SeMNPV). These plots also revealed a group of 17 core genes whose order was conserved in other alpha- and betabaculoviruses.


Baculoviridae/genetics , Spodoptera/virology , Africa , Animals , Base Sequence , Crops, Agricultural/parasitology , DNA, Viral/genetics , Genome, Viral , Phylogeny , Whole Genome Sequencing
10.
Viruses ; 10(7)2018 07 11.
Article En | MEDLINE | ID: mdl-29997344

The Baculoviridae, a family of insect-specific large DNA viruses, is widely used in both biotechnology and biological control. Its applied value stems from millions of years of evolution influenced by interactions with their hosts and the environment. To understand how ecological interactions have shaped baculovirus diversification, we reconstructed a robust molecular phylogeny using 217 complete genomes and ~580 isolates for which at least one of four lepidopteran core genes was available. We then used a phylogenetic-concept-based approach (mPTP) to delimit 165 baculovirus species, including 38 species derived from new genetic data. Phylogenetic optimization of ecological characters revealed a general pattern of host conservatism punctuated by occasional shifts between closely related hosts and major shifts between lepidopteran superfamilies. Moreover, we found significant phylogenetic conservatism between baculoviruses and the type of plant growth (woody or herbaceous) associated with their insect hosts. In addition, we found that colonization of new ecological niches sometimes led to viral radiation. These macroevolutionary patterns show that besides selection during the infection process, baculovirus diversification was influenced by tritrophic interactions, explained by their persistence on plants and interactions in the midgut during horizontal transmission. This complete eco-evolutionary framework highlights the potential innovations that could still be harnessed from the diversity of baculoviruses.


Baculoviridae/physiology , Biodiversity , Evolution, Molecular , Conserved Sequence , DNA, Viral , Ecology , Genome, Viral , Host-Pathogen Interactions , Phylogeny
11.
Curr Opin Insect Sci ; 21: 54-59, 2017 06.
Article En | MEDLINE | ID: mdl-28822489

Insect pathogens are widely used as a tool for sustainable pest management. Their complex mode of action was thought to make them immune to the evolution of resistance; however, several examples of field-based resistance to the bacterium Bacillus thuringiensis and a granulovirus have been recorded. Here I review the scenarios where resistance has evolved and discuss the likelihood of it occurring in other entomopathogens. I highlight recent research on the factors which might influence the evolution of resistance to insect pathogens, including the role of pathogen diversity, host nutrition and transgenerational effects.


Host-Pathogen Interactions , Insecta/microbiology , Insecta/virology , Animals , Bacillus thuringiensis/physiology , Baculoviridae/physiology , Biological Evolution , Insecta/genetics , Insecta/immunology , Pest Control, Biological/methods
12.
J Invertebr Pathol ; 139: 25-33, 2016 09.
Article En | MEDLINE | ID: mdl-27418148

Infection by parasites can alter the feeding behaviour of hosts. Some animals seek out substances that can therapeutically clear infections (self-medication), some may seek out resources to recoup resources lost while fighting off infection (compensatory feeding) and others may be manipulated to ingest substances that benefit parasite fitness (parasite manipulation of host). Recent studies have indicated that pathogen-challenged insects can self-medicate by increasing their protein intake relative to carbohydrate, which is thought to act by boosting the insect's immune response. However, increased protein intake could also be due to compensatory feeding or pathogen manipulation of the host, and a rigorous examination of all four of the testable predictions, which is necessary for verifying self-medication behaviour, has not been conducted. The therapeutic behaviour must (1) only be employed by infected individuals and (2) alleviate the potential fitness loss of the infected individual. (3) If an uninfected individual engages in the behaviour, they suffer a decrease in fitness, and lastly, (4) the parasite cannot benefit from the behaviour. In response to baculovirus-challenge (AcMNPV) at 24°C, the cabbage looper, Trichoplusia ni, increased proportional protein intake, by increasing protein intake rather than decreasing carbohydrate intake. Increased protein intake did not benefit virus fitness, but it also did not increase the probability of host survival. Increased proportional protein intake did not occur in response to TnSNPV-challenge at 24°C or in response to AcMNPV-challenge at a higher temperature (32°C), indicating that the virus-induced change in nutrient intake depends on virus identity and temperature. Since virus-challenged T. ni did not show the typical costs associated with infection, the altered nutrient intake is likely to be a compensatory response. Understanding the motivation behind pathogen-induced changes in feeding behaviour could have significant implications for determining its importance for species interactions at multiple trophic levels.


Feeding Behavior/physiology , Host-Pathogen Interactions/physiology , Moths/physiology , Moths/virology , Animals , Baculoviridae , Larva
13.
J Anim Ecol ; 85(5): 1200-9, 2016 Sep.
Article En | MEDLINE | ID: mdl-27155461

Natural populations of pathogens are frequently composed of numerous interacting strains. Understanding what maintains this diversity remains a key focus of research in disease ecology. In addition, within-host pathogen dynamics can have a strong impact on both infection outcome and the evolution of pathogen virulence, and thus, understanding the impact of pathogen diversity is important for disease management. We compared eight genetically distinguishable variants from Spodoptera exempta nucleopolyhedrovirus (SpexNPV) isolated from the African armyworm, Spodoptera exempta. NPVs are obligate killers, and the vast majority of transmission stages are not released until after the host has died. The NPV variants differed significantly in their virulence and could be clustered into two groups based on their dose-response curves. They also differed in their speed of kill and productivity (transmission potential) for S. exempta. The mixed-genotype wild-type (WT) SpexNPV, from which each variant was isolated, was significantly more virulent than any individual variant and its mean mortality rate was within the fastest group of individual variants. However, the WT virus produced fewer new infectious stages than any single variant, which might reflect competition among the variants. A survival analysis, combining the mortality and speed of kill data, confirmed the superiority of the genetically mixed WT virus over any single variant. Spodoptera exempta larvae infected with WT SpexNPV were predicted to die 2·7 and 1·9 times faster than insects infected with isolates from either of the two clusters of genotypes. Theory suggests that there are likely to be trade-offs between pathogen fitness traits. Across all larvae, there was a negative linear relationship between virus yield and speed of kill, such that more rapid host death carried the cost of producing fewer transmission stages. We also found a near-significant relationship for the same trend at the intervariant level. However, there was no evidence for a significant relationship between the induced level of mortality and transmission potential (virus yield) or speed of kill.


Genetic Fitness , Nucleopolyhedroviruses/physiology , Spodoptera/virology , Animals , Larva/growth & development , Larva/virology , Nucleopolyhedroviruses/genetics , Spodoptera/growth & development
14.
Evol Appl ; 9(1): 231-47, 2016 Jan.
Article En | MEDLINE | ID: mdl-27087850

Pathogens are ubiquitous in insect populations and yet few studies examine their dynamics and impacts on host populations. We discuss four lepidopteran systems and explore their contributions to disease ecology and evolution. More specifically, we elucidate the role of pathogens in insect population dynamics. For three species, western tent caterpillars, African armyworm and introduced populations of gypsy moth, infection by nucleopolyhedrovirus (NPV) clearly regulates host populations or reduces their outbreaks. Transmission of NPV is largely horizontal although low levels of vertical transmission occur, and high levels of covert infection in some cases suggest that the virus can persist in a nonsymptomatic form. The prevalence of a mostly vertically transmitted protozoan parasite, Ophryocystis elektroscirrha, in monarch butterflies is intimately related to their migratory behaviour that culls highly infected individuals. Virulence and transmission are positively related among genotypes of this parasite. These systems clearly demonstrate that the interactions between insects and pathogens are highly context dependent. Not only is the outcome a consequence of changes in density and genetic diversity: environmental factors, particularly diet, can have strong impacts on virulence, transmission and host resistance or tolerance. What maintains the high level of host and pathogen diversity in these systems, however, remains a question.

15.
J Invertebr Pathol ; 136: 35-42, 2016 05.
Article En | MEDLINE | ID: mdl-26944002

Invertebrate hosts that survive pathogen challenge can produce offspring that are more resistant to the same pathogen via immune priming, thereby improving the fitness of their offspring in the same pathogen environment. Most evidence for immune priming comes from exposure to bacteria and there are limited data on other groups of pathogens. Poor parental nutrition has also been shown to result in the transgenerational transfer of pathogen resistance and increased immunocompetence. Here, we combine exposure to an insect DNA virus with a change in the parental diet to examine both parental costs and transgenerational immune priming. We challenged the cabbage looper, Trichoplusia ni, with a low dose of the baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and altered dietary protein to carbohydrate ratio (p:c ratio) after virus exposure. Insects fed a low protein diet had lower haemolymph protein concentrations, and exhibited costs of smaller pupae and slower development, while survivors of virus challenge developed more slowly, irrespective of p:c ratio, and those that were virus-challenged and fed on a low protein diet showed a reduction in haemocyte density. In addition, AcMNPV-challenged parents laid fewer eggs earlier in egg laying although egg size was the same as for unchallenged parents. There was no evidence for increased resistance to AcMNPV (immune priming) or changes in haemocyte number (as proxy for constitutive cellular immunity) in the offspring either as a result of parental AcMNPV-challenge or low dietary p:c ratio. Therefore, although pathogen-challenge and nutritional changes can affect host development and reproduction, this does not necessarily translate into transgenerational immune priming. Our findings contrast with an earlier study on another type of baculovirus, a granulovirus, where immune priming was suggested. This indicates that transgenerational immune priming is not universal in invertebrates and is likely to depend on the host-pathogen system, or the level of pathogen exposure and the type of dietary manipulation. Identifying whether immune priming or transgenerational effects are relevant in field populations, remains a challenge.


Diet , Genetic Fitness/physiology , Insecticide Resistance/physiology , Moths/virology , Pest Control, Biological/methods , Animals , Host-Pathogen Interactions/physiology , Nucleopolyhedroviruses/immunology
16.
Sci Rep ; 5: 15351, 2015 Oct 19.
Article En | MEDLINE | ID: mdl-26477393

Specialist and generalist pathogens may exert different costs on their hosts; thereby altering the way hosts cope with environmental variation. We examined how pathogen-challenge alters the environmental conditions that maximize host performance by simultaneously varying temperature and nutrition (protein to carbohydrate ratio; P:C) after exposure to two baculoviruses; one that is specific to the cabbage looper, Trichoplusia ni (TnSNPV) and another that has a broad host range (AcMNPV). Virus-challenged larvae performed better on more protein-biased diets, primarily due to higher survival, whereas unchallenged larvae performed best on a balanced diet. The environmental conditions that maximized host performance differed with virus identity because TnSNPV-challenge inflicted fitness costs (reduced pupal weight and prolonged development) whereas AcMNPV-challenge did not. The performance of TnSNPV-challenged larvae rose with increasing P:C across all temperatures, whereas temperature modulated the optimal P:C in AcMNPV-challenged larvae (slightly protein-biased at 16 °C to increasingly higher P:C as temperature increased). Increasing temperature reduced pupal size, but only at more balanced P:C ratios, indicating that nutrition moderates the temperature-size rule. Our findings highlight the complex environmental interactions that can alter host performance after exposure to pathogens, which could impact the role of entomopathogens as regulators of insect populations in a changing climate.


Climate , Environment , Host-Pathogen Interactions , Animals , Models, Theoretical , Moths/virology
17.
Insects ; 6(3): 746-59, 2015 Aug 25.
Article En | MEDLINE | ID: mdl-26463414

Many pathogens and parasites are present in host individuals and populations without any obvious signs of disease. This is particularly true for baculoviruses infecting lepidopteran hosts, where studies have shown that covert persistent viral infections are almost ubiquitous in many species. To date, the infection intensity of covert viruses has rarely been quantified. In this study, we investigated the dynamics of a covert baculovirus infection within the lepidopteran crop pest Spodoptera exempta. A real-time quantitative polymerase chain reaction (qPCR) procedure using a 5' nuclease hydrolysis (TaqMan) probe was developed for specific detection and quantification of Spodoptera exempta nucleopolyhedrovirus (SpexNPV). The qPCR assay indicated that covert baculovirus dynamics varied considerably over the course of the host life-cycle, with infection load peaking in early larval instars and being lowest in adults and final-instar larvae. Adult dissections indicated that, contrary to expectation, viral load aggregation was highest in the head, wings and legs, and lowest in the thorax and abdomen. The data presented here have broad implications relating to our understanding of transmission patterns of baculoviruses and the role of covert infections in host-pathogen dynamics.

18.
Curr Opin Insect Sci ; 8: 130-135, 2015 Apr.
Article En | MEDLINE | ID: mdl-32846660

Transmission is a fundamental process in disease ecology; however, the factors that modulate transmission and the dynamical and evolutionary consequences of these factors in host populations are difficult to study in natural settings. Much of our current knowledge comes from a limited number of virus groups and few ecological studies. Alternatively, progress has been made in the detection of new viruses and in probing the molecular basis of behavioural manipulation of hosts that might influence virus transmission. An expanding theoretical framework provides guidelines on the conditions under which particular transmission strategies might evolve, and their dynamical consequences, but empirical tests are lacking.

19.
PLoS One ; 9(8): e105864, 2014.
Article En | MEDLINE | ID: mdl-25171126

Beneficial alleles that spread rapidly as an adaptation to a new environment are often associated with costs that reduce the fitness of the population in the original environment. Several species of insect pests have evolved resistance to Bacillus thuringiensis (Bt) toxins in the field, jeopardizing its future use. This has most commonly occurred through the alteration of insect midgut binding sites specific for Bt toxins. While fitness costs related to Bt resistance alleles have often been recorded, the mechanisms behind them have remained obscure. We asked whether evolved resistance to Bt alters dietary nutrient intake, and if reduced efficiency of converting ingested nutrients to body growth are associated with fitness costs and variation in susceptibility to Bt. We fed the cabbage looper Trichoplusia ni artificial diets differing in levels of dietary imbalance in two major macronutrients, protein and digestible carbohydrate. By comparing a Bt-resistant T. ni strain with a susceptible strain we found that the mechanism behind reduced pupal weights and growth rates associated with Bt-resistance in T. ni was reduced consumption rather than impaired conversion of ingested nutrients to growth. In fact, Bt-resistant T. ni showed more efficient conversion of nutrients than the susceptible strain under certain dietary conditions. Although increasing levels of dietary protein prior to Bt challenge had a positive effect on larval survival, the LC50 of the resistant strain decreased when fed high levels of excess protein, whereas the LC50 of the susceptible strain continued to rise. Our study demonstrates that examining the nutritional basis of fitness costs may help elucidate the mechanisms underpinning them.


Bacillus thuringiensis/physiology , Diet , Insecticide Resistance , Moths/microbiology , Animal Nutritional Physiological Phenomena , Animals , Bacillus thuringiensis/chemistry , Bacterial Toxins/metabolism , Brassica/parasitology , Dietary Carbohydrates/pharmacology , Dietary Proteins/pharmacology , Host-Pathogen Interactions , Moths/growth & development , Pupa/drug effects , Pupa/growth & development , Pupa/microbiology
20.
PLoS One ; 9(5): e96679, 2014.
Article En | MEDLINE | ID: mdl-24858905

Cyclic or fluctuating populations experience regular periods of low population density. Genetic bottlenecks during these periods could give rise to temporal or spatial genetic differentiation of populations. High levels of movement among increasing populations, however, could ameliorate any differences and could also synchronize the dynamics of geographically separated populations. We use microsatellite markers to investigate the genetic differentiation of four island and one mainland population of western tent caterpillars, Malacosoma californicum pluviale, in two periods of peak or pre-peak density separated by 8 years. Populations showed high levels of genetic variation and little genetic differentiation either temporally between peaks or spatially among sites. Mitochondrial haplotypes were also shared between one island population and one mainland population in the two years studied. An isolation-by-distance analysis showed the FST values of the two geographically closest populations to have the highest level of differentiation in both years. We conclude that high levels of dispersal among populations maintain both synchrony of population dynamics and override potential genetic differentiation that might occur during population troughs. As far we are aware, this is the first time that genetic similarity between temporally separated population outbreaks in insects has been investigated. A review of genetic data for both vertebrate and invertebrate species of cyclic animals shows that a lack of spatial genetic differentiation is typical, and may result from high levels of dispersal associated with fluctuating dynamics.


Genetic Variation , Islands , Lepidoptera/genetics , Animals , Genetic Drift , Genetics, Population , Microsatellite Repeats/genetics , Population Dynamics , Sequence Analysis
...