Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Ther Nucleic Acids ; 33: 469-482, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37583575

RESUMEN

The year 2023 marks the 25th anniversary of the discovery of RNAi. RNAi-based therapeutics enable sequence-specific gene knockdown by eliminating target RNA molecules through complementary base-pairing. A systematic review of published and ongoing clinical trials was performed. Web of Science, PubMed, and Embase were searched from January 1, 1998, to December 30, 2022 for clinical trials using RNAi. Following inclusion, data from the articles were extracted according to a predefined protocol. A total of 90 trials published in 81 articles were included. In addition, ongoing clinical trials were retrieved from ClinicalTrials.gov, resulting in the inclusion of 48 trials. We investigated how maturation of RNAi-based therapeutics and developments in delivery platforms, administration routes, and potential targets shape the current landscape of clinically applied RNAi. Notably, most contemporary clinical trials used either N-acetylgalactosamine delivery and subcutaneous administration or lipid nanoparticle delivery and intravenous administration. In conclusion, RNAi therapeutics have gained great momentum during the past decade, resulting in five approved therapeutics targeting the liver for treatment of severe diseases, and the trajectory depicted by the ongoing trials emphasizes that even more RNAi-based medicines also targeting extra-hepatic tissues are likely to be available in the years to come.

2.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555738

RESUMEN

Breast cancer is the leading cause of cancer incidence worldwide and among the five leading causes of cancer mortality. Despite major improvements in early detection and new treatment approaches, the need for better outcomes and quality of life for patients is still high. Extracellular vesicles play an important role in tumor biology, as they are able to transfer information between cells of different origins and locations. Their potential value as biomarkers or for targeted tumor therapy is apparent. In this study, we analyzed the supernatants of MCF-7 breast cancer cells, which were harvested following 5 or 10 days of simulated microgravity on a Random Positioning Machine (RPM). The primary results showed a substantial increase in released vesicles following incubation under simulated microgravity at both time points. The distribution of subpopulations regarding their surface protein expression is also altered; the minimal changes between the time points hint at an early adaption. This is the first step in gaining further insight into the mechanisms of tumor progression, metastasis, the education of the tumor microenvironments, and preparation of the metastatic niche. Additionally, this may lighten up the processes of the rapid cellular adaptions in the organisms of space travelers during spaceflights.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Vuelo Espacial , Ingravidez , Humanos , Femenino , Calidad de Vida , Simulación de Ingravidez , Microambiente Tumoral
3.
Int J Mol Sci ; 22(4)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33669943

RESUMEN

Space travel has always been the man's ultimate destination. With the ability of spaceflight though, came the realization that exposure to microgravity has lasting effects on the human body. To counteract these, many studies were and are undertaken, on multiple levels. Changes in cell growth, gene, and protein expression have been described in different models on Earth and in space. Extracellular vesicles, and in particular exosomes, are important cell-cell communicators, being secreted from almost all the cells and therefore, are a perfect target to further investigate the underlying reasons of the organism's adaptations to microgravity. Here, we studied supernatants harvested from the CellBox-1 experiment, which featured human thyroid cancer cells flown to the International Space Station during the SpaceX CRS-3 cargo mission. The initial results show differences in the number of secreted exosomes, as well as in the distribution of subpopulations in regards to their surface protein expression. Notably, alteration of their population regarding the tetraspanin surface expression was observed. This is a promising step into a new area of microgravity research and will potentially lead to the discovery of new biomarkers and pathways of cellular cross-talk.


Asunto(s)
Exosomas/metabolismo , Vuelo Espacial , Neoplasias de la Tiroides/metabolismo , Ingravidez , Antígenos CD/metabolismo , Línea Celular Tumoral , Fluorescencia , Humanos , Interferometría , Tamaño de la Partícula
4.
Pediatr Res ; 88(4): 556-564, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32045933

RESUMEN

BACKGROUND: Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is the most frequent fatty acid oxidation (FAO) defect in humans. MCAD-deficient fibroblasts are more resistant to oxidative stress-induced cell death than other FAO defects and healthy controls. METHODS: Herein we investigate the antioxidant response and mitochondrial function in fibroblasts from MCAD-deficient patients (c.985 A>G/c.985 A>G) and healthy controls. RESULTS: MCAD-deficient fibroblasts showed increased level of mitochondrial superoxide, while lipids were less oxidatively damaged, and higher amount of manganese superoxide dismutase were detected compared to healthy controls, showing forceful antioxidant system in MCADD. We showed increased maximal respiration and reserve capacity in MCAD-deficient fibroblasts compared to controls, indicating more capacity through the tricarboxylic acid (TCA) cycle and subsequently respiratory chain. This led us to study the pyruvate dehydrogenase complex (PDC), the key enzyme in the glycolysis releasing acetyl-CoA to the TCA cycle. MCAD-deficient fibroblasts displayed not only significantly increased PDC but also increased lipoylated PDC protein levels compared to healthy controls. CONCLUSIONS: Based on these findings, we raise the interesting hypothesis that increased PDC-bound lipoic acid, synthesized from accumulated octanoic acid in MCADD, may affect the cellular antioxidant pool in MCADD.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Acil-CoA Deshidrogenasa/genética , Antioxidantes/farmacología , Errores Innatos del Metabolismo Lipídico/metabolismo , Ácido Tióctico/química , Acil-CoA Deshidrogenasa/metabolismo , Antioxidantes/metabolismo , Caprilatos/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Muerte Celular , Fibroblastos/metabolismo , Genotipo , Glucólisis , Humanos , Peroxidación de Lípido , Mitocondrias/metabolismo , Estrés Oxidativo , Fenotipo , Superóxidos/metabolismo
5.
Sci Rep ; 8(1): 16486, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405140

RESUMEN

Schizophrenia is a common and severe mental disorder arising from complex gene-environment interactions affecting brain development and functioning. While a consensus on the neuroanatomical correlates of schizophrenia is emerging, much of its fundamental pathobiology remains unknown. In this study, we explore brain morphometry in mice with genetic susceptibility and phenotypic relevance to schizophrenia (Brd1+/- mice) using postmortem 3D MR imaging coupled with histology, immunostaining and regional mRNA marker analysis. In agreement with recent large-scale schizophrenia neuroimaging studies, Brd1+/- mice displayed subcortical abnormalities, including volumetric reductions of amygdala and striatum. Interestingly, we demonstrate that structural alteration in striatum correlates with a general loss of striatal neurons, differentially impacting subpopulations of medium-sized spiny neurons and thus potentially striatal output. Akin to parvalbumin interneuron dysfunction in patients, a decline in parvalbumin expression was noted in the developing cortex of Brd1+/- mice, mainly driven by neuronal loss within or near cortical layer V, which is rich in corticostriatal projection neurons. Collectively, our study highlights the translational value of the Brd1+/- mouse as a pre-clinical tool for schizophrenia research and provides novel insight into its developmental, structural, and cellular pathology.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Histona Acetiltransferasas/genética , Interneuronas/metabolismo , Neuronas/metabolismo , Parvalbúminas/genética , Animales , Biomarcadores , Recuento de Células , Expresión Génica , Perfilación de la Expresión Génica , Heterocigoto , Histona Acetiltransferasas/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Tamaño de los Órganos , Parvalbúminas/metabolismo
6.
Neuroendocrinology ; 106(2): 167-186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28494452

RESUMEN

BACKGROUND/AIM: Variability in the severity and age at onset of autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) may be associated with certain types of variants in the arginine vasopressin (AVP) gene. In this study, we aimed to describe a large family with an apparent predominant female occurrence of polyuria and polydipsia and to determine the underlying cause. METHODS: The family members reported their family demography and symptoms. Two subjects were diagnosed by fluid deprivation and dDAVP challenge tests. Eight subjects were tested genetically. The identified variant along with 3 previously identified variants in the AVP gene were investigated by heterologous expression in a human neuronal cell line (SH-SY5Y). RESULTS: Both subjects investigated clinically had a partial neurohypophyseal diabetes insipidus phenotype. A g.276_278delTCC variant in the AVP gene causing a Ser18del deletion in the signal peptide (SP) of the AVP preprohormone was perfectly co-segregating with the disease. When expressed in SH-SY5Y cells, the Ser18del variant along with 3 other SP variants (g.227G>A, Ser17Phe, and Ala19Thr) resulted in reduced AVP mRNA, impaired AVP secretion, and partial AVP prohormone degradation and retention in the endoplasmic reticulum. Impaired SP cleavage was demonstrated directly in cells expressing the Ser18del, g.227G>A, and Ala19Thr variants, using state-of-the-art mass spectrometry. CONCLUSION: Variants affecting the SP of the AVP preprohormone cause adFNDI with variable phenotypes by a mechanism that may involve impaired SP cleavage combined with effects at the mRNA, protein, and cellular level.


Asunto(s)
Diabetes Insípida Neurogénica/genética , Diabetes Insípida Neurogénica/metabolismo , Variación Genética , Neurofisinas/genética , Neurofisinas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Vasopresinas/genética , Vasopresinas/metabolismo , Adulto , Línea Celular Tumoral , Niño , Retículo Endoplásmico/metabolismo , Familia , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Proteolisis , ARN Mensajero/metabolismo , Factores Sexuales
7.
Hum Gene Ther Methods ; 28(4): 222-233, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28817343

RESUMEN

Lentivirus-based vectors have been used for the development of potent gene therapies. Here, application of a multigenic lentiviral vector (LV) producing multiple anti-angiogenic microRNAs following subretinal delivery in a laser-induced choroidal neovascularization (CNV) mouse model is presented. This versatile LV, carrying back-to-back RNApolII-driven expression cassettes, enables combined expression of microRNAs targeting vascular endothelial growth factor A (Vegfa) mRNA and fluorescent reporters. In addition, by including a vitelliform macular dystrophy 2 (VMD2) promoter, expression of microRNAs is restricted to the retinal pigment epithelial (RPE) cells. Six days post injection (PI), robust and widespread fluorescent signals of eGFP are already observed in the retina by funduscopy. The eGFP expression peaks at day 21 PI and persists with stable expression for at least 9 months. In parallel, prominent AsRED co-expression, encoded from the VMD2-driven microRNA expression cassette, is evident in retinal sections and flat-mounts, revealing RPE-specific expression of microRNAs. Furthermore, LV-delivered microRNAs targeting the Vegfa gene in RPE cells reduced the size of laser-induced CNV in mice 28 days PI, as a consequence of diminished VEGF levels, suggesting that LVs delivered locally are powerful tools in the development of gene therapy-based strategies for treatment of age-related macular degeneration.


Asunto(s)
Neovascularización Coroidal/terapia , Terapia Genética/métodos , Vectores Genéticos/genética , Lentivirus/genética , Degeneración Macular/terapia , MicroARNs/genética , Animales , Bestrofinas/genética , Células Cultivadas , Femenino , Vectores Genéticos/administración & dosificación , Inyecciones Intraoculares , Ratones , Ratones Endogámicos C57BL , MicroARNs/administración & dosificación , Regiones Promotoras Genéticas , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Stem Cell Res ; 19: 37-42, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28413003

RESUMEN

Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is caused by variants in the arginine vasopressin (AVP) gene. Here we report the generation of induced pluripotent stem cells (iPSCs) from a 42-year-old man carrying an adFNDI causing variant in exon 1 of the AVP gene using lentivirus-mediated nuclear reprogramming. The iPSCs carried the expected variant in the AVP gene. Furthermore, the iPSCs expressed pluripotency markers; displayed in vitro differentiation potential to the three germ layers and had a normal karyotype consistent with the original fibroblasts. This iPSC line is useful in future studies focusing on the pathogenesis of adFNDI.


Asunto(s)
Diabetes Insípida Neurogénica/patología , Células Madre Pluripotentes Inducidas/citología , Adulto , Arginina Vasopresina/genética , Arginina Vasopresina/metabolismo , Secuencia de Bases , Diferenciación Celular , Línea Celular , Reprogramación Celular , Diabetes Insípida Neurogénica/metabolismo , Cuerpos Embrioides/citología , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipo , Lentivirus/genética , Masculino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Eur Neuropsychopharmacol ; 26(9): 1522-1526, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27424800

RESUMEN

Despite the identification of numerous schizophrenia-associated genetic variants, few have been examined functionally to identify and characterize the causal variants. To mitigate this, we aimed at identifying functional variants affecting miRNA function. Using data from a large-scale genome-wide association study of schizophrenia, we looked for schizophrenia risk variants altering either miRNA binding sites, miRNA genes, promoters for miRNA genes, or variants that were expression quantitative trait loci (eQTLs) for miRNA genes. We hereby identified several potentially functional variants relating to miRNA function with our top finding being a schizophrenia protective allele that disrupts miR-206׳s binding to NT5C2 thus leading to increased expression of this gene. A subsequent experimental follow-up of the variant using a luciferase-based reporter assay confirmed that the allele disrupts the binding. Our study therefore suggests that miR-206 may contribute to schizophrenia risk through allele-dependent regulation of the genome-wide significant gene NT5C2.


Asunto(s)
5'-Nucleotidasa/metabolismo , MicroARNs/metabolismo , Polimorfismo de Nucleótido Simple , Esquizofrenia/genética , Esquizofrenia/metabolismo , 5'-Nucleotidasa/genética , Sitios de Unión/genética , Biología Computacional , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , MicroARNs/genética , Regiones Promotoras Genéticas , Unión Proteica/genética , Sitios de Carácter Cuantitativo
10.
Bone ; 87: 44-56, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27032715

RESUMEN

Experiencing real weightlessness in space is a dream for many of us who are interested in space research. Although space traveling fascinates us, it can cause both short-term and long-term health problems. Microgravity is the most important influence on the human organism in space. The human body undergoes dramatic changes during a long-term spaceflight. In this review, we will mainly focus on changes in calcium, sodium and bone metabolism of space travelers. Moreover, we report on the current knowledge on the mechanisms of bone loss in space, available models to simulate the effects of microgravity on bone on Earth as well as the combined effects of microgravity and cosmic radiation on bone. The available countermeasures applied in space will also be evaluated.


Asunto(s)
Huesos/fisiología , Ingravidez , Resorción Ósea/patología , Huesos/metabolismo , Calcio/metabolismo , Humanos , Sodio/metabolismo , Vuelo Espacial
11.
Sci Rep ; 5: 16691, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26576504

RESUMEN

Three-dimensional multicellular spheroids (MCS) of human cells are important in cancer research. We investigated possible mechanisms of MCS formation of thyroid cells. Both, normal Nthy-ori 3-1 thyroid cells and the poorly differentiated follicular thyroid cancer cells FTC-133 formed MCS within 7 and 14 days of culturing on a Random Positioning Machine (RPM), while a part of the cells continued to grow adherently in each culture. The FTC-133 cancer cells formed larger and numerous MCS than the normal cells. In order to explain the different behaviour, we analyzed the gene expression of IL6, IL7, IL8, IL17, OPN, NGAL, VEGFA and enzymes associated cytoskeletal or membrane proteins (ACTB, TUBB, PFN1, CPNE1, TGM2, CD44, FLT1, FLK1, PKB, PKC, ERK1/2, Casp9, Col1A1) as well as the amount of secreted proteins (IL-6, IL-7, IL-8, IL-17, OPN, NGAL, VEGFA). Several of these components changed during RPM-exposure in each cell line. Striking differences between normal and malignant cells were observed in regards to the expression of genes of NGAL, VEGFA, OPN, IL6 and IL17 and to the secretion of VEGFA, IL-17, and IL-6. These results suggest several gravi-sensitive growth or angiogenesis factors being involved in 3D formation of thyroid cells cultured under simulated microgravity.


Asunto(s)
Adenocarcinoma Folicular/patología , Técnicas de Cultivo de Célula , Esferoides Celulares , Glándula Tiroides/patología , Células Tumorales Cultivadas , Simulación de Ingravidez , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Proliferación Celular , Citocinas/biosíntesis , Citoesqueleto/genética , Citoesqueleto/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Transducción de Señal , Glándula Tiroides/metabolismo
12.
PLoS One ; 10(8): e0135157, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26274317

RESUMEN

In this study we focused on gravity-sensitive proteins of two human thyroid cancer cell lines (ML-1; RO82-W-1), which were exposed to a 2D clinostat (CLINO), a random positioning machine (RPM) and to normal 1g-conditions. After a three (3d)- or seven-day-culture (7d) on the two devices, we found both cell types growing three-dimensionally within multicellular spheroids (MCS) and also cells remaining adherent (AD) to the culture flask, while 1g-control cultures only formed adherent monolayers, unless the bottom of the culture dish was covered by agarose. In this case, the cytokines IL-6 and IL-8 facilitated the formation of MCS in both cell lines using the liquid-overlay technique at 1g. ML-1 cells grown on the RPM or the CLINO released amounts of IL-6 and MCP-1 into the supernatant, which were significantly elevated as compared to 1g-controls. Release of IL-4, IL-7, IL-8, IL-17, eotaxin-1 and VEGF increased time-dependently, but was not significantly influenced by the gravity conditions. After 3d on the RPM or the CLINO, an accumulation of F-actin around the cellular membrane was detectable in AD cells of both cell lines. IL-6 and IL-8 stimulation of ML-1 cells for 3d and 7d influenced the protein contents of ß1-integrin, talin-1, Ki-67, and beta-actin dose-dependently in adherent cells. The ß1-integrin content was significantly decreased in AD and MCS samples compared with 1g, while talin-1 was higher expressed in MCS than AD populations. The proliferation marker Ki-67 was elevated in AD samples compared with 1g and MCS samples. The ß-actin content of R082-W-1 cells remained unchanged. ML-1 cells exhibited no change in ß-actin in RPM cultures, but a reduction in CLINO samples. Thus, we concluded that simulated microgravity influences the release of cytokines in follicular thyroid cancer cells, and the production of ß1-integrin and talin-1 and predicts an identical effect under real microgravity conditions.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Citocinas/biosíntesis , Proteínas de Neoplasias/biosíntesis , Esferoides Celulares/metabolismo , Línea Celular Tumoral , Humanos , Ingravidez
13.
Mol Ther Methods Clin Dev ; 2: 14064, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052532

RESUMEN

Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.

14.
Cell Commun Signal ; 13: 18, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25889719

RESUMEN

BACKGROUND: Chondrocytes are the main cellular component of articular cartilage. In healthy tissue, they are embedded in a strong but elastic extracelluar matrix providing resistance against mechanical forces and friction for the joints. Osteoarthritic cartilage, however, disrupted by heavy strain, has only very limited potential to heal. One future possibility to replace damaged cartilage might be the scaffold-free growth of chondrocytes in microgravity to form 3D aggregates. RESULTS: To prepare for this, we have conducted experiments during the 20th DLR parabolic flight campaign, where we fixed the cells after the first (1P) and the 31st parabola (31P). Furthermore, we subjected chondrocytes to isolated vibration and hypergravity conditions. Microarray and quantitative real time PCR analyses revealed that hypergravity regulated genes connected to cartilage integrity (BMP4, MMP3, MMP10, EDN1, WNT5A, BIRC3). Vibration was clearly detrimental to cartilage (upregulated inflammatory IL6 and IL8, downregulated growth factors EGF, VEGF, FGF17). The viability of the cells was not affected by the parabolic flight, but showed a significantly increased expression of anti-apoptotic genes after 31 parabolas. The IL-6 release of chondrocytes cultured under conditions of vibration was not changed, but hypergravity (1.8 g) induced a clear elevation of IL-6 protein in the supernatant compared with corresponding control samples. CONCLUSION: Taken together, this study provided new insights into the growth behavior of chondrocytes under short-term microgravity.


Asunto(s)
Condrocitos/metabolismo , Regulación de la Expresión Génica , Ingravidez , Aviación , Células Cultivadas , Condrocitos/citología , Perfilación de la Expresión Génica , Humanos
15.
Forensic Sci Int ; 234: 149-53, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24378315

RESUMEN

Primary cell cultures were investigated as a tool for molecular diagnostics in a forensic setting. Fibroblast cultures had been established from human Achilles tendon resected at autopsies, from cases of sudden infant death syndrome and control infants who died in traumatic events (n=41). After isolation of primary cultures cells were stored at -135°C, and re-established up to 15 years later for experimental intervention. Growth characteristics in cultures were evaluated in relation to the age of the donor, the post mortem interval before sampling, and the storage interval of cells before entry into the study. High interpersonal variation in growth rates and cell doubling time was seen, but no statistically significant differences were found with increasing age of the donor (mean 19 weeks), length of post-mortem interval prior to sampling (6-100 h), or increase in years of storage. Fibroblast cultures established from post-mortem tissue are renewable sources of biological material; they can be the foundation for genetic, metabolic and other functional studies and thus constitute a valuable tool for molecular and pathophysiological investigations in biomedical and forensic sciences.


Asunto(s)
Tendón Calcáneo/patología , Fibroblastos/citología , Cambios Post Mortem , Biopsia , Estudios de Casos y Controles , Recuento de Células , Proliferación Celular , Células Cultivadas , Patologia Forense , Humanos , Lactante , Manejo de Especímenes , Muerte Súbita del Lactante , Factores de Tiempo
16.
Forensic Sci Int ; 232(1-3): 16-24, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24053860

RESUMEN

The aim of the present study was to investigate stress gene expression in cultured primary fibroblasts established from Achilles tendons collected during autopsies from sudden infant death syndrome (SIDS) cases, and age-matched controls (infants dying in a traumatic event). Expression of 4 stress responsive genes, HSPA1B, HSPD1, HMOX1, and SOD2, was studied by quantitative reverse transcriptase PCR analysis of RNA purified from cells cultured under standard or various thermal stress conditions. The expression of all 4 genes was highly influenced by thermal stress in both SIDS and control cells. High interpersonal variance found in the SIDS group indicated that they represented a more heterogeneous group than controls. The SIDS group responded to thermal stress with a higher expression of the HSPA1B and HSPD1 genes compared to the control group, whereas no significant difference was observed in the expression of SOD2 and HMOX1 between the two groups. The differences were related to the heat shock treatment as none of the genes were expressed significantly different in SIDS at base levels at 37 °C. SOD2 and HMOX1 were up regulated in both groups, for SOD2 though the expression was lower in SIDS at all time points measured, and may be less related to heat stress. Being found dead in the prone position (a known risk factor for SIDS) was related to a lower HSPA1B up-regulation in SIDS compared to SIDS found on their side or back. The study demonstrates the potential usefulness of gene expression studies using cultured fibroblasts established from deceased individuals as a tool for molecular and pathological investigations in forensic and biomedical sciences.


Asunto(s)
Chaperonina 60/genética , Proteínas HSP70 de Choque Térmico/genética , Trastornos de Estrés por Calor/genética , Hemo-Oxigenasa 1/genética , Proteínas Mitocondriales/genética , Muerte Súbita del Lactante/genética , Superóxido Dismutasa/genética , Tendón Calcáneo/citología , Estudios de Casos y Controles , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Genética Forense , Patologia Forense , Calor , Humanos , Lactante , Recién Nacido , Posición Prona , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Regulación hacia Arriba
17.
J Gene Med ; 14(5): 328-38, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22438271

RESUMEN

BACKGROUND: Vascular endothelial growth factor (VEGF) is an angiogenic growth factor that plays a critical role in several diseases, including cancer, rheumatoid arthritis and diseases of the eye. Persistent regulation of VEGF by expression of small interfering RNAs targeting VEGF represents a potential future strategy for treatment of such diseases. As a step toward this goal, the present study combines the potency of VEGF-targeted miRNA mimics, produced from a miRNA cluster, with delivery by adeno-associated virus (AAV)-based vectors. METHODS: Nine different engineered tri-cistronic miRNA clusters encoding anti-VEGF effectors were generated and tested in adult human retinal pigment epithelial (ARPE-19) cells using Renilla luciferase screening, quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting and immunostaining analysis. In vivo efficacy was tested by the injection of scAAV2/8 vectors expressing the most effective miRNA cluster into murine hindlimb muscles, followed by quantitative RT-PCR. RESULTS: Plasmids containing anti-VEGF miRNA clusters showed efficient silencing of VEGF and demonstrated a combined gene silencing effect for miRNA clusters composed of multiple miRNA-mimicked RNA interference effectors. The most potent molecule, miR-5,10,7, resulted in a knockdown of VEGF by approximately 75%. Injection of scAAV2/8 vectors expressing miR-5,10,7 into murine hindlimb muscles, resulted in a 44% reduction of endogenous VEGF. CONCLUSIONS: We have developed miRNA clusters encoding anti-VEGF effectors and shown, in a mouse model, that VEGF is efficiently down-regulated by scAAV2/8-delivered miRNA clusters, allowing potent attenuation of VEGF. These findings may contribute to the development of gene therapy based on AAV-mediated delivery of miRNA clusters.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , MicroARNs/genética , Factor A de Crecimiento Endotelial Vascular , Animales , Dependovirus , Técnicas de Silenciamiento del Gen , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Ratones , Epitelio Pigmentado de la Retina/citología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Cell Stress Chaperones ; 16(6): 633-40, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21717087

RESUMEN

Mitochondrial dysfunction is associated with neurodegenerative diseases and mutations in the HSPD1 gene, encoding the mitochondrial Hsp60 chaperone, are the causative factors of two neurodegenerative diseases, hereditary spastic paraplegia and MitChap60 disease. In cooperation with Hsp10, Hsp60 forms a barrel-shaped complex, which encloses unfolded polypeptides and provides an environment facilitating folding. We have generated an Hsp60 variant with a mutation (Asp423Ala) in the ATPase domain and established a stable human embryonic kidney (HEK293) cell line allowing tetracycline-controlled expression of this mutant variant. We monitored expression of the Hsp60-Asp423Ala variant protein following induction and examined its effects on cellular properties. We showed that the folding of mitochondrial-targeted green fluorescent protein, a well-known substrate protein of Hsp60, was consistently impaired in cells expressing Hsp60-Asp423Ala. The level of the Hsp60-Asp423Ala variant protein increased over time upon induction, cell proliferation stopped after 48-h induction and mitochondrial membrane potential decreased in a time-dependent manner. In summary, we have established a stable cell line with controllable expression of an Hsp60 variant, which allows detailed studies of different degrees of Hsp60 deficiency.


Asunto(s)
Chaperonina 60/genética , Células HEK293/metabolismo , Proteínas Mitocondriales/genética , Mutación Puntual , Adenosina Trifosfato/metabolismo , Proliferación Celular , Chaperonina 60/química , Chaperonina 60/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Potencial de la Membrana Mitocondrial , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína
19.
Hum Genet ; 126(4): 549-57, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19517137

RESUMEN

Atopic dermatitis (AD) is a common, itchy skin disease of complex inheritance characterized by dermal and epidermal inflammation. The heritability is considerable and well documented. To date, four genome scans have examined the AD phenotype, showing replicated linkage at 3p26-22, 3q13-21 and 18q11-21. Our previous AD scan showed evidence of linkage to loci at 3p and 18q, and furthermore at 4p15-14. In order to further investigate the genetic basis of AD, we collected and analysed a new Danish family sample consisting of 130 AD sib pair families (555 individuals including 295 children with AD). AD was diagnosed after clinical examination, AD severity was scored and specific IgE was determined. A linkage scan of chromosome 3, 4 and 18 was performed using 91 microsatellite markers. Linkage analyses were performed of dichotomous phenotypes and semi-quantitative traits including the AD severity score. We analysed the novel AD sample alone and together with the previously examined sample. AD severity showed a maximum Z-score of 3.7 at 4q22.1 suggesting the localization of a novel gene for AD severity. A maximum MOD score of 4.6 was obtained at 3p24 for the AD phenotype, providing the first significant linkage of AD at this locus. A maximum MLS score of 3.3 was obtained at 3q21 for IgE-associated AD, and evidence of linkage was also obtained at 3p22.2-21.31, 3q13, 4q35, and 18q12. The results presented should provide a firm basis for gene-targeting studies of AD and related disorders.


Asunto(s)
Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 4/genética , Dermatitis Atópica/genética , Ligamiento Genético/genética , Adolescente , Niño , Mapeo Cromosómico , Femenino , Genotipo , Humanos , Inmunoglobulina E/sangre , Masculino , Fenotipo , Hermanos
20.
J Biol Chem ; 283(23): 15694-700, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18400758

RESUMEN

We have previously reported the association of a mutation (c.292G > A/p.V98I) in the human HSPD1 gene that encodes the mitochondrial Hsp60 chaperonin with a dominantly inherited form of hereditary spastic paraplegia. Here, we show that the purified Hsp60-(p.V98I) chaperonin displays decreased ATPase activity and exhibits a strongly reduced capacity to promote folding of denatured malate dehydrogenase in vitro. To test its in vivo functions, we engineered a bacterial model system that lacks the endogenous chaperonin genes and harbors two plasmids carrying differentially inducible operons with human Hsp10 and wild-type Hsp60 or Hsp10 and Hsp60-(p.V98I), respectively. Ten hours after shutdown of the wild-type chaperonin operon and induction of the Hsp60-(p.V98I)/Hsp10 mutant operon, bacterial cell growth was strongly inhibited. No globally increased protein aggregation was observed, and microarray analyses showed that a number of genes involved in metabolic pathways, some of which are essential for robust aerobic growth, were strongly up-regulated in Hsp60-(p.V98I)-expressing bacteria, suggesting that the growth arrest was caused by defective folding of some essential proteins. Co-expression of Hsp60-(p.V98I) and wild-type Hsp60 exerted a dominant negative effect only when the chaperonin genes were expressed at relatively low levels. Based on our in vivo and in vitro data, we propose that the major effect of heterozygosity for the Hsp60-(p.V98I) mutation is a moderately decreased activity of chaperonin complexes composed of mixed wild-type and Hsp60-(p.V98I) mutant subunits.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Sustitución de Aminoácidos , Chaperoninas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Paraplejía Espástica Hereditaria/metabolismo , Adenosina Trifosfatasas/genética , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60 , Chaperoninas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Heterocigoto , Humanos , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales , Modelos Biológicos , Operón/genética , Pliegue de Proteína , Paraplejía Espástica Hereditaria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...