Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nature ; 609(7925): 197-203, 2022 09.
Article En | MEDLINE | ID: mdl-35882349

Archaea synthesize isoprenoid-based ether-linked membrane lipids, which enable them to withstand extreme environmental conditions, such as high temperatures, high salinity, and low or high pH values1-5. In some archaea, such as Methanocaldococcus jannaschii, these lipids are further modified by forming carbon-carbon bonds between the termini of two lipid tails within one glycerophospholipid to generate the macrocyclic archaeol or forming two carbon-carbon bonds between the termini of two lipid tails from two glycerophospholipids to generate the macrocycle glycerol dibiphytanyl glycerol tetraether (GDGT)1,2. GDGT contains two 40-carbon lipid chains (biphytanyl chains) that span both leaflets of the membrane, providing enhanced stability to extreme conditions. How these specialized lipids are formed has puzzled scientists for decades. The reaction necessitates the coupling of two completely inert sp3-hybridized carbon centres, which, to our knowledge, has not been observed in nature. Here we show that the gene product of mj0619 from M. jannaschii, which encodes a radical S-adenosylmethionine enzyme, is responsible for biphytanyl chain formation during synthesis of both the macrocyclic archaeol and GDGT membrane lipids6. Structures of the enzyme show the presence of four metallocofactors: three [Fe4S4] clusters and one mononuclear rubredoxin-like iron ion. In vitro mechanistic studies show that Csp3-Csp3 bond formation takes place on fully saturated archaeal lipid substrates and involves an intermediate bond between the substrate carbon and a sulfur of one of the [Fe4S4] clusters. Our results not only establish the biosynthetic route for tetraether formation but also improve the use of GDGT in GDGT-based paleoclimatology indices7-10.


Archaeal Proteins , Glyceryl Ethers , Membrane Lipids , Methanocaldococcus , Archaeal Proteins/chemistry , Archaeal Proteins/isolation & purification , Archaeal Proteins/metabolism , Carbon/chemistry , Carbon/metabolism , Glycerol/chemistry , Glycerol/metabolism , Glyceryl Ethers/chemistry , Glyceryl Ethers/metabolism , Membrane Lipids/biosynthesis , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Methanocaldococcus/chemistry , Methanocaldococcus/enzymology , Methanocaldococcus/metabolism , S-Adenosylmethionine/metabolism , Terpenes/chemistry , Terpenes/metabolism
2.
PLoS Genet ; 13(6): e1006847, 2017 Jun.
Article En | MEDLINE | ID: mdl-28628615

One of the major mechanisms driving the evolution of all organisms is genomic rearrangement. In hyperthermophilic Archaea of the order Thermococcales, large chromosomal inversions occur so frequently that even closely related genomes are difficult to align. Clearly not resulting from the native homologous recombination machinery, the causative agent of these inversions has remained elusive. We present a model in which genomic inversions are catalyzed by the integrase enzyme encoded by a family of mobile genetic elements. We characterized the integrase from Thermococcus nautili plasmid pTN3 and showed that besides canonical site-specific reactions, it catalyzes low sequence specificity recombination reactions with the same outcome as homologous recombination events on DNA segments as short as 104bp both in vitro and in vivo, in contrast to other known tyrosine recombinases. Through serial culturing, we showed that the integrase-mediated divergence of T. nautili strains occurs at an astonishing rate, with at least four large-scale genomic inversions appearing within 60 generations. Our results and the ubiquitous distribution of pTN3-like integrated elements suggest that a major mechanism of evolution of an entire order of Archaea results from the activity of a selfish mobile genetic element.


Chromosome Inversion/genetics , Evolution, Molecular , Integrases/genetics , Thermococcales/genetics , Genome, Archaeal , Interspersed Repetitive Sequences/genetics , Plasmids/genetics , Recombination, Genetic
3.
Biochimie ; 118: 313-21, 2015 Nov.
Article En | MEDLINE | ID: mdl-26166067

The genomes of the 21 completely sequenced Thermococcales display a characteristic high level of rearrangements. As a result, the prediction of their origin and termination of replication on the sole basis of chromosomal DNA composition or skew is inoperative. Using a different approach based on biologically relevant sequences, we were able to determine oriC position in all 21 genomes. The position of dif, the site where chromosome dimers are resolved before DNA segregation could be predicted in 19 genomes. Computation of the core genome uncovered a number of essential gene clusters with a remarkably stable chromosomal position across species, in sharp contrast with the scrambled nature of their genomes. The active chromosomal reorganization of numerous genes acquired by horizontal transfer, mainly from mobile elements, could explain this phenomenon.


Chromosomes/genetics , Genes, Archaeal/genetics , Thermococcales/genetics , Base Sequence , Comparative Genomic Hybridization , Evolution, Molecular , Gene Rearrangement , Genome , Molecular Sequence Data
4.
Genome Announc ; 2(2)2014 Mar 27.
Article En | MEDLINE | ID: mdl-24675865

Thermococcus nautili 30-1 (formerly Thermococcus nautilus), an anaerobic hyperthermophilic marine archaeon, was isolated in 1999 from a deep-sea hydrothermal vent during the Amistad campaign. Here, we present the complete sequence of T. nautili, which is able to produce membrane vesicles containing plasmid DNA. This property makes T. nautili a model organism to study horizontal gene transfer.

5.
PLoS One ; 7(11): e50470, 2012.
Article En | MEDLINE | ID: mdl-23185630

The ethylene-forming enzyme (EFE) from Pseudomonas syringae catalyzes the synthesis of ethylene which can be easily detected in the headspace of closed cultures. A synthetic codon-optimized gene encoding N-terminal His-tagged EFE (EFEh) was expressed in Synechocystis sp. PCC 6803 (Synechocystis) and Escherichia coli (E. coli) under the control of diverse promoters in a self-replicating broad host-range plasmid. Ethylene synthesis was stably maintained in both organisms in contrast to earlier work in Synechococcus elongatus PCC 7942. The rate of ethylene accumulation was used as a reporter for protein expression in order to assess promoter strength and inducibility with the different expression systems. Several metal-inducible cyanobacterial promoters did not function in E. coli but were well-regulated in cyanobacteria, albeit at a low level of expression. The E. coli promoter P(trc) resulted in constitutive expression in cyanobacteria regardless of whether IPTG was added or not. In contrast, a Lac promoter variant, P(A1lacO-1), induced EFE-expression in Synechocystis at a level of expression as high as the Trc promoter and allowed a fine level of IPTG-dependent regulation of protein-expression. The regulation was tight at low cell density and became more relaxed in more dense cultures. A synthetic quorum-sensing promoter system was also constructed and shown to function well in E. coli, however, only a very low level of EFE-activity was observed in Synechocystis, independent of cell density.


Bacterial Proteins/genetics , Escherichia coli/genetics , Ethylenes/biosynthesis , Gene Expression Regulation, Bacterial , Lyases/genetics , Pseudomonas syringae/chemistry , Synechocystis/genetics , Bacterial Proteins/metabolism , Base Sequence , Codon , Escherichia coli/enzymology , Lyases/metabolism , Molecular Sequence Data , Plasmids , Promoter Regions, Genetic , Pseudomonas syringae/enzymology , Quorum Sensing , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Synechocystis/enzymology , Transformation, Bacterial
...