Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Anal Bioanal Chem ; 415(13): 2613-2627, 2023 May.
Article En | MEDLINE | ID: mdl-36631573

Microbial metabolomics allows understanding and to comprehensively analyse metabolites, and their related cellular and metabolic processes, that are produced and released to the extracellular environment under specific conditions. In that regard, the main objective of this research is to understand the impact of culture media changes in the metabolic profile of Pedobacter lusitanus NL19 (NL19) and Pedobacter himalayensis MTCC 6384 (MTCC6384) and respective influence on the production of biotechnologically relevant compounds. Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry with time-of-flight analyser (GC × GC-ToFMS) was applied to comprehensively study the metabolites produced by NL19 and MTCC6384 both in tryptic soy broth 100% (TSB100) and tryptic soy broth with 25% casein peptone (PC25). A total of 320 metabolites were putatively identified, which belong to different chemical families: alcohols, aldehydes, esters, ethers, hydrocarbons, ketones, nitrogen compounds, sulphur compounds, monoterpenes, and sesquiterpenes. Metabolites that were statistically different from the control (sterile medium) were selected allowing for the construction of the metabolic profile of both strains. A set of 80 metabolites was tentatively associated to the metabolic pathways such as the metabolism of fatty acids, branched-chain aminoacids, phenylalanine, methionine, aromatic compounds, and monoterpene and sesquiterpene biosynthesis. This study allowed to better understand how slight changes of the culture media and thus the composition of nutrients impair the metabolic profile of bacteria, which may be further explored for metabolomics pipeline construction or biotechnological applications.


Aldehydes , Volatile Organic Compounds , Humans , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry , Monoterpenes , Culture Media , Volatile Organic Compounds/chemistry , Solid Phase Microextraction/methods
2.
Molecules ; 27(9)2022 Apr 23.
Article En | MEDLINE | ID: mdl-35566076

Broa is a Portuguese maize bread with characteristic sensory attributes that can only be achieved using traditional maize varieties. This study intends to disclose the volatile compounds that are mainly associated with the baking process of broas, which can be important contributors to their aroma. Twelve broas were prepared from twelve maize flours (eleven traditional maize varieties and one commercial hybrid). Their volatile compounds were analyzed by GC×GC-ToFMS (two-dimensional gas chromatography coupled with time-of-flight mass spectrometry) for an untargeted screening of the chemical compounds mainly formed during baking. It was possible to identify 128 volatiles that belonged to the main chemical families formed during this stage. Among these, only 16 had been previously detected in broas. The most abundant were furans, furanones, and pyranones, but the most relevant for the aroma of broas were ascribed to sulfur-containing compounds, in particular dimethyl trisulfide and methanethiol. Pyrazines might contribute negatively to the aroma of broas since they were present in higher amounts in the commercial broa. This work constitutes the most detailed study of the characterization of broas volatile compounds, particularly those formed during the Maillard reaction. These findings may contribute to the characterization of other maize-based foodstuffs, ultimately improving the production of foods with better sensory features.


Volatile Organic Compounds , Bread/analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Odorants/analysis , Sulfur Compounds/analysis , Volatile Organic Compounds/analysis , Zea mays/chemistry
3.
Front Chem ; 10: 820749, 2022.
Article En | MEDLINE | ID: mdl-35300387

The human senses shape the life in several aspects, namely well-being, socialization, health status, and diet, among others. However, only recently, the understanding of this highly sophisticated sensory neuronal pathway has gained new advances. Also, it is known that each olfactory receptor cell expresses only one type of odorant receptor, and each receptor can detect a limited number of odorant substances. Odorant substances are typically volatile or semi-volatile in nature, exhibit low relative molecular weight, and represent a wide variety of chemical families. These molecules may be released from foods, constituting clouds surrounding them, and are responsible for their aroma properties. A single natural aroma may contain a huge number of volatile components, and some of them are present in trace amounts, which make their study especially difficult. Understanding the components of food aromas has become more important than ever with the transformation of food systems and the increased innovation in the food industry. Two-dimensional gas chromatography and time-of-flight mass spectrometry (GC × GC-ToFMS) seems to be a powerful technique for the analytical coverage of the food aromas. Thus, the main purpose of this review is to critically discuss the potential of the GC × GC-based methodologies, combined with a headspace solvent-free microextraction technique, in tandem with data processing and data analysis, as a useful tool to the analysis of the chemical aroma clouds of foods. Due to the broad and complex nature of the aroma chemistry subject, some concepts and challenges related to the characterization of volatile molecules and the perception of aromas will be presented in advance. All topics covered in this review will be elucidated, as much as possible, with examples reported in recent publications, to make the interpretation of the fascinating world of food aroma chemistry more attractive and perceptive.

4.
Foods ; 10(11)2021 Nov 19.
Article En | MEDLINE | ID: mdl-34829150

The Aspergillus niger exometabolome was recently investigated using advanced gas chromatography in tandem with multivariate analysis, which allowed a metabolite biomarker pattern to be proposed. Microbial metabolomics patterns have gained enormous relevance, mainly due to the amount of information made available, which may be useful in countless processes. One of the great challenges in microbial metabolomics is related to applications in more complex systems of metabolomics information obtained from studies carried out in culture media, as complications may occur due to the dynamic nature of biological systems. Thus, the main objective of this research was to evaluate the applicability of the A. niger metabololite biomarkers pattern for in situ and early evaluation of table grapes contamination, used as study model. A. niger is a ubiquitous fungus responsible for food contamination, being reported as one of the main agents of the black mold disease, a serious post-harvest pathology of table grapes. This work included analysis from 1 day of growth time of pure A. niger cultures, A. niger cultures obtained from previously contaminated grapes, and finally, an in situ solid-phase microextraction (SPME) approach directly on previously contaminated table grapes. Supervised multivariate analysis was performed which revealed that after 1 day of inoculation it was possible to detect A. niger biomarkers, which can be extremely useful in making this type of method possible for the rapid detection of food contamination. The results obtained confirm the potential applicability of the pattern of A. niger biomarkers for early detection of the fungi (after 1 day of contamination), and may be further explored for access food susceptibility to fungi contamination, based on direct analysis of the food item.

5.
Foods ; 11(1)2021 Dec 31.
Article En | MEDLINE | ID: mdl-35010230

Improvement of dietary and ecological biodiversity, namely by exploring autochthonous varieties, is a key point to the construction of a more sustainable food system and planetary health. However, the environmental sustainability continues to face huge challenges, reflecting the importance of achieving a better understanding about the functional role of biodiversity in ecosystems. Thus, the main objective of this research is to contribute to the sustainable valorization of Sambucus nigra L. berries through a comprehensive approach to evaluate the effects of elderberry's cultivar, harvest year, and plantation field on the physicochemical berry composition. Moreover, the nutritional value of elderberry juice and respective dried pomace was determined. This complementary information is of huge utility for the rational and, as much as possible, integral use of elderberries. The harvest year, followed by field and the interaction of harvest × field, accounted for the highest impact on the berry's physicochemical parameters, indicating the importance of the combined impact of the macro- and mesoclimate conditions on plant metabolism. Elderberry juice and dried pomace are a good source of carbohydrates (ca. 12 and 82%, respectively) and have low amounts of fat (≤2.5%), making them low-energy foods. Dried pomace may also represent a potential alternative source of vegetal protein (ca. 6%).

6.
Microorganisms ; 8(12)2020 Nov 30.
Article En | MEDLINE | ID: mdl-33266330

Microbial metabolomics is a challenge strategy that allows a comprehensive analysis of metabolites within a microorganism and may support a new approach in microbial research, including the microbial diagnosis. Thus, the aim of this research was to in-depth explore a metabolomics strategy based on the use of an advanced multidimensional gas chromatography for the comprehensive mapping of cellular metabolites of C. albicans and non-C. albicans (C. glabrata and C. tropicalis) and therefore contributing for the development of a comprehensive platform for fungal detection management and for species distinction in early growth times (6 h). The volatile fraction comprises 126 putatively identified metabolites distributed over several chemical families: acids, alcohols, aldehydes, hydrocarbons, esters, ketones, monoterpenic and sesquiterpenic compounds, norisoprenoids, phenols and sulphur compounds. These metabolites may be related with different metabolic pathways, such as amino acid metabolism and biosynthesis, fatty acids metabolism, aromatic compounds degradation, mono and sesquiterpenoid synthesis and carotenoid cleavage. These results represent an enlargement of ca. 70% of metabolites not previously reported for C. albicans, 91% for C. glabrata and 90% for C. tropicalis. This study represents the most detailed study about Candida species exometabolome, allowing a metabolomic signature of each species, which signifies an improvement towards the construction of a Candida metabolomics platform whose application in clinical diagnostics can be crucial to guide therapeutic interventions.

7.
Sci Rep ; 6: 27441, 2016 06 06.
Article En | MEDLINE | ID: mdl-27264696

An in-depth exploration of the headspace content of Aspergillus niger cultures was performed upon different growth conditions, using a methodology based on advanced multidimensional gas chromatography. This volatile fraction comprises 428 putatively identified compounds distributed over several chemical families, being the major ones hydrocarbons, alcohols, esters, ketones and aldehydes. These metabolites may be related with different metabolic pathways, such as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of aromatic compounds, mono and sesquiterpenoid synthesis and carotenoid cleavage. The A. niger molecular biomarkers pattern was established, comprising the 44 metabolites present in all studied conditions. This pattern was successfully used to distinguish A. niger from other fungi (Candida albicans and Penicillium chrysogenum) with 3 days of growth by using Partial Least Squares-Discriminant Analysis (PLS-DA). In addition, PLS-DA-Variable Importance in Projection was applied to highlight the metabolites playing major roles in fungi distinction; decreasing the initial dataset to only 16 metabolites. The data pre-processing time was substantially reduced, and an improvement of quality-of-fit value was achieved. This study goes a step further on A. niger metabolome construction and A. niger future detection may be proposed based on this molecular biomarkers pattern.


Aspergillus niger/metabolism , Metabolome , Amino Acids/metabolism , Aspergillus niger/growth & development , Biomarkers/metabolism , Carotenoids/metabolism , Discriminant Analysis , Fatty Acids/metabolism , Gas Chromatography-Mass Spectrometry , Least-Squares Analysis , Sesquiterpenes/metabolism , Volatilization
...