Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(27): 11949-11954, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35749730

RESUMEN

α-Synuclein (α-Syn) is an intrinsically disordered protein which self-assembles into highly organized ß-sheet structures that accumulate in plaques in brains of Parkinson's disease patients. Oxidative stress influences α-Syn structure and self-assembly; however, the basis for this remains unclear. Here we characterize the chemical and physical effects of mild oxidation on monomeric α-Syn and its aggregation. Using a combination of biophysical methods, small-angle X-ray scattering, and native ion mobility mass spectrometry, we find that oxidation leads to formation of intramolecular dityrosine cross-linkages and a compaction of the α-Syn monomer by a factor of √2. Oxidation-induced compaction is shown to inhibit ordered self-assembly and amyloid formation by steric hindrance, suggesting an important role of mild oxidation in preventing amyloid formation.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Amiloide/química , Humanos , Enfermedad de Parkinson/metabolismo , Tirosina/análogos & derivados , Tirosina/química , alfa-Sinucleína/química
2.
JACS Au ; 1(12): 2385-2393, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34977906

RESUMEN

In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.

3.
Biochim Biophys Acta Gen Subj ; 1862(6): 1452-1461, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29550429

RESUMEN

BACKGROUND: Adaptive mutations that alter protein functionality are enriched within intrinsically disordered protein regions (IDRs), thus conformational flexibility correlates with evolvability. Pre-structured motifs (PreSMos) with transient propensity for secondary structure conformation are believed to be important for IDR function. The glucocorticoid receptor tau1core transcriptional activation domain (GR tau1core) domain contains three α-helical PreSMos in physiological buffer conditions. METHODS: Sixty change-of-function mutants affecting the intrinsically disordered 58-residue GR tau1core were studied using disorder prediction and molecular dynamics simulations. RESULTS: Change-of-function mutations were partitioned into seven clusters based on their effect on IDR predictions and gene activation activity. Some mutations selected from clusters characterized by mutations altering the IDR prediction score, altered the apparent stability of the α-helical form of one of the PreSMos in molecular dynamics simulations, suggesting PreSMo stabilization or destabilization as strategies for functional adaptation. Indeed all tested gain-of-function mutations affecting this PreSMo were associated with increased stability of the α-helical PreSMo conformation, suggesting that PreSMo stabilization may be the main mechanism by which adaptive mutations can increase the activity of this IDR type. Some mutations did not appear to affect PreSMo stability. CONCLUSIONS: Changes in PreSMo stability account for the effects of a subset of change-of-function mutants affecting the GR tau1core IDR. GENERAL SIGNIFICANCE: Long IDRs occur in about 50% of human proteins. They are poorly characterized despite much recent attention. Our results suggest the importance of a subtle balance between PreSMo stability and IDR activity, which may provide a novel target for future pharmaceutical intervention.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Mutación , Conformación Proteica en Hélice alfa , Receptores de Glucocorticoides/química , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Receptores de Glucocorticoides/genética , Activación Transcripcional
4.
Cell Chem Biol ; 25(3): 309-317.e4, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29358052

RESUMEN

The interactions between proteins and biological membranes are important for drug development, but remain notoriously refractory to structural investigation. We combine non-denaturing mass spectrometry (MS) with molecular dynamics (MD) simulations to unravel the connections among co-factor, lipid, and inhibitor binding in the peripheral membrane protein dihydroorotate dehydrogenase (DHODH), a key anticancer target. Interrogation of intact DHODH complexes by MS reveals that phospholipids bind via their charged head groups at a limited number of sites, while binding of the inhibitor brequinar involves simultaneous association with detergent molecules. MD simulations show that lipids support flexible segments in the membrane-binding domain and position the inhibitor and electron acceptor-binding site away from the membrane surface, similar to the electron acceptor-binding site in respiratory chain complex I. By complementing MS with MD simulations, we demonstrate how a peripheral membrane protein uses lipids to modulate its structure in a similar manner as integral membrane proteins.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Fosfolípidos/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Dihidroorotato Deshidrogenasa , Electrones , Humanos , Ligandos , Simulación de Dinámica Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fosfolípidos/química , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray
5.
Anal Chem ; 89(14): 7425-7430, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28627869

RESUMEN

A wide variety of biological processes rely upon interactions between proteins and lipids, ranging from molecular transport to the organization of the cell membrane. It was recently established that electrospray ionization mass spectrometry (ESI-MS) is capable of capturing transient interactions between membrane proteins and their lipid environment, and a detailed understanding of the underlying processes is therefore of high importance. Here, we apply ESI-MS to investigate the factors that govern complex formation in solution and gas phases by comparing nonselective lipid binding with soluble and membrane proteins. We find that exogenously added lipids did not bind to soluble proteins, suggesting that lipids have a low propensity to form electrospray ionization adducts. The presence of detergents at increasing micelle concentrations, on the other hand, resulted in moderate lipid binding to soluble proteins. A direct ESI-MS comparison of lipid binding to the soluble protein serum albumin and to the integral membrane protein NapA shows that soluble proteins acquire fewer lipid adducts. Our results suggest that protein-lipid complexes form via contacts between proteins and mixed lipid/detergent micelles. For soluble proteins, these complexes arise from nonspecific contacts between the protein and detergent/lipid micelles in the electrospray droplet. For membrane proteins, lipids are incorporated into the surrounding micelle in solution, and complex formation occurs independently of the ESI process. We conclude that the lipids in the resulting complexes interact predominantly with sites located in the transmembrane segments, resulting in nativelike complexes that can be interrogated by MS.


Asunto(s)
Detergentes/química , Lípidos/química , Proteínas de la Membrana/química , Albúmina Sérica/química , Animales , Sitios de Unión , Bovinos , Humanos , Micelas , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA