Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 95: 129488, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37770003

RESUMEN

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.


Asunto(s)
Ácido Flufenámico , Neoplasias , Humanos , Ácido Flufenámico/farmacología , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Vía de Señalización Hippo , Neoplasias/genética
2.
Cells ; 11(22)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429058

RESUMEN

The Hippo pathway consists of a cascade of kinases that controls the phosphorylation of the co-activators YAP/TAZ. When unphosphorylated, YAP and TAZ translocate into the nucleus, where they mainly bind to the TEAD transcription factor family and activate genes related to cell proliferation and survival. In this way, the inhibition of the Hippo pathway promotes cell survival, proliferation, and stemness fate. Another pathway can modulate these processes, namely the Wnt/ß-catenin pathway that is indeed involved in cellular functions such as proliferation and cell survival, as well as apoptosis, growth, and cell renewal. Wnt signaling can act in a canonical or noncanonical way, depending on whether ß-catenin is involved in the process. In this review, we will focus only on the canonical Wnt pathway. It has emerged that YAP/TAZ are components of the ß-catenin destruction complex and that there is a close relationship between the Hippo pathway and the canonical Wnt pathway. Furthermore, recent data have shown that both of these pathways may play a role in neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, or Amyotrophic Lateral Sclerosis. Thus, this review analyzes the Hippo pathway and the Wnt pathway, their crosstalk, and their involvement in Huntington's disease, as well as in other neurodegenerative disorders. Altogether, these data suggest possible therapeutic approaches targeting key players of these pathways.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Vía de Señalización Wnt , beta Catenina/metabolismo , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas
3.
Antiviral Res ; 204: 105364, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716929

RESUMEN

Viral exoribonucleases are uncommon in the world of RNA viruses. To date, they have only been identified in the Arenaviridae and the Coronaviridae families. The exoribonucleases of these viruses play a crucial role in the pathogenicity and interplay with host innate immune response. Moreover, coronaviruses exoribonuclease is also involved in a proofreading mechanism ensuring the genetic stability of the viral genome. Because of their key roles in virus life cycle, they constitute attractive target for drug design. Here we developed a sensitive, robust and reliable fluorescence polarization assay to measure the exoribonuclease activity and its inhibition in vitro. The effectiveness of the method was validated on three different viral exoribonucleases, including SARS-CoV-2, Lymphocytic Choriomeningitis and Machupo viruses. We performed a screening of a focused library consisting of 113 metal chelators. Hit compounds were recovered with an IC50 at micromolar level. We confirmed 3 hits in SARS-CoV-2 infected Vero-E6 cells.


Asunto(s)
Antivirales , Arenavirus , Exorribonucleasas , SARS-CoV-2 , Animales , Antivirales/farmacología , Arenavirus/efectos de los fármacos , Chlorocebus aethiops , Exorribonucleasas/antagonistas & inhibidores , Polarización de Fluorescencia , SARS-CoV-2/efectos de los fármacos , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores
4.
Expert Opin Ther Pat ; 32(8): 899-912, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35768160

RESUMEN

INTRODUCTION: The Hippo pathway represents a new opportunity for the treatment of cancer. Overexpression of Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ) or TEAD has been demonstrated in cancers and YAP mediates resistance to cancer drugs. Since 2018, the potential of this pathway has been illustrated by numerous articles and patents and the first drugs entering in clinical trial phase 1. AREAS COVERED: This review is limited to published patent applications that have disclosed direct small-molecule inhibitors of the YAP/TAZ-TEAD interaction. EXPERT OPINION: The YAP/TAZ-TEAD transcriptional complex is a promising target for the treatment of cancer. Approximately 30 international patents (used database: Sci-finder, query: TEAD; documents: patents; period: from 2017-January 2022) that disclose TEAD transcriptional inhibitors have been filled since 2018. The mechanism of action is not always described in the patents, we can divide the drugs into three different categories: (i) external TEAD ligands; (ii) non-covalent TEAD ligands of the palmitate pocket; (iii) covalent TEAD ligands, which bind into the palmitate pocket. The first molecules in clinical trial phase 1 are non-covalent TEAD ligands. The selective TEAD ligand have also been patented, published and selectivity could be of great interest for personalized medicine.


Asunto(s)
Neoplasias , Patentes como Asunto , Factores de Transcripción de Dominio TEA , Proteínas Señalizadoras YAP , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Palmitatos , Factores de Transcripción de Dominio TEA/antagonistas & inhibidores , Proteínas Señalizadoras YAP/antagonistas & inhibidores
5.
J Med Chem ; 65(8): 5926-5940, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35389210

RESUMEN

The Hippo signaling pathway plays a fundamental role in the control of organ growth, cell proliferation, and stem cell characters. TEADs are the main transcriptional output regulators of the Hippo signaling pathway and bind to YAP and TAZ co-activators. TEAD1-4 are expressed differently, depending on the tissue and developmental level, and can be overexpressed in certain pathologies. TEAD ligands mainly target the internal pocket of the C-terminal domain of TEAD, and the first ligands selective for TEAD1 and TEAD3 have been recently reported. In this paper, we focus on the topographic homology of the TEAD C-terminal domain both externally and in the internal pocket to highlight the possibility of rationally designing ligands selective for one of the TEAD family members. We identified a novel TEAD2-specific pocket and reported its first ligand. Finally, AlphaFold2 models of full-length TEADs suggest TEAD autoregulation and emphasize the importance of the interface 2.


Asunto(s)
Vía de Señalización Hippo , Factores de Transcripción , Proliferación Celular , Ligandos , Factores de Transcripción/metabolismo
6.
Cell Death Differ ; 29(2): 285-292, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34862481

RESUMEN

The risk of zoonotic coronavirus spillover into the human population, as highlighted by the SARS-CoV-2 pandemic, demands the development of pan-coronavirus antivirals. The efficacy of existing antiviral ribonucleoside/ribonucleotide analogs, such as remdesivir, is decreased by the viral proofreading exonuclease NSP14-NSP10 complex. Here, using a novel assay and in silico modeling and screening, we identified NSP14-NSP10 inhibitors that increase remdesivir's potency. A model compound, sofalcone, both inhibits the exonuclease activity of SARS-CoV-2, SARS-CoV, and MERS-CoV in vitro, and synergistically enhances the antiviral effect of remdesivir, suppressing the replication of SARS-CoV-2 and the related human coronavirus OC43. The validation of top hits from our primary screenings using cellular systems provides proof-of-concept for the NSP14 complex as a therapeutic target.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Exorribonucleasas/metabolismo , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Células A549 , Adenosina Monofosfato/farmacología , Alanina/farmacología , Antivirales/farmacología , Humanos , SARS-CoV-2/enzimología , Replicación Viral/efectos de los fármacos
7.
Eur J Med Chem ; 226: 113835, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34509860

RESUMEN

The Hippo pathway is involved in organ size control and tissue homeostasis by regulating cell growth, proliferation and apoptosis. It controls the phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) in order to control their nuclear import and their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several cancers making YAP/TAZ-TEAD interaction a new emerging anti-cancer target. We report the synthesis of a set of trisubstituted pyrazoles which bind to hTEAD2 at the interface 2 revealing for the first time a cryptic pocket created by the movement of the phenol ring of Y382. Compound 6 disrupts YAP/TAZ-TEAD interaction in HEK293T cells and inhibits TEAD target genes and cell proliferation in MDA-MB-231 cells. Compound 6 is therefore the first inhibitor of YAP/TAZ-TEAD targeting interface 2. This molecule could serve with other pan-TEAD inhibitors such as interface 3 ligands, for the delineation of the relative importance of VGLL vs YAP/TAZ in a given cellular model.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Descubrimiento de Drogas , Pirazoles/farmacología , Factores de Transcripción de Dominio TEA/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Factores de Transcripción de Dominio TEA/metabolismo , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo
8.
ChemMedChem ; 16(18): 2823-2844, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34032019

RESUMEN

Starting from our previously reported hit, a series of 1,5-diaryl-1,2,3-triazole-4-carbohydrazones were synthesized and evaluated as inhibitors of the YAP/TAZ-TEAD complex. Their binding to hTEAD2 was confirmed by nanodifferential scanning fluorimetry, and some of the compounds were also found to moderately disrupt the YAP-TEAD interaction, as assessed by a fluorescence polarization assay. A TEAD luciferase gene reporter assay performed in HEK293T cells and RTqPCR measurements in MDA-MB231 cells showed that these compounds inhibit YAP/TAZ-TEAD activity to cells in the micromolar range. In spite of the cytotoxic effects displayed by some of the compounds of this series, they are still good starting points and can be suitably modified into an effective and viable YAP-TEAD disruptor in the future.


Asunto(s)
Antineoplásicos/farmacología , Hidrazonas/farmacología , Factores de Transcripción de Dominio TEA/antagonistas & inhibidores , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/antagonistas & inhibidores , Triazoles/farmacología , Proteínas Señalizadoras YAP/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Estructura Molecular , Relación Estructura-Actividad , Factores de Transcripción de Dominio TEA/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Triazoles/síntesis química , Triazoles/química , Proteínas Señalizadoras YAP/metabolismo
9.
Antiviral Res ; 162: 79-89, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30557576

RESUMEN

Arenaviridae is a viral family whose members are associated with rodent-transmitted infections to humans responsible of severe diseases. The current lack of a vaccine and limited therapeutic options make the development of efficacious drugs of high priority. The cap-snatching mechanism of transcription of Arenavirus performed by the endonuclease domain of the L-protein is unique and essential, so we developed a drug design program targeting the endonuclease activity of the prototypic Lymphocytic ChorioMeningitis Virus. Since the endonuclease activity is metal ion dependent, we designed a library of compounds bearing chelating motifs (diketo acids, polyphenols, and N-hydroxyisoquinoline-1,3-diones) able to block the catalytic center through the chelation of the critical metal ions, resulting in a functional impairment. We pre-screened 59 compounds by Differential Scanning Fluorimetry. Then, we characterized the binding affinity by Microscale Thermophoresis and evaluated selected compounds in in vitro and in cellula assays. We found several potent binders and inhibitors of the endonuclease activity. This study validates the proof of concept that the endonuclease domain of Arenavirus can be used as a target for anti-arena-viral drug discovery and that both diketo acids and N-hydroxyisoquinoline-1,3-diones can be considered further as potential metal-chelating pharmacophores.


Asunto(s)
Quelantes/farmacología , Endonucleasas/antagonistas & inhibidores , Virus de la Coriomeningitis Linfocítica/efectos de los fármacos , Virus de la Coriomeningitis Linfocítica/enzimología , Proteínas Virales/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Virus de la Coriomeningitis Linfocítica/fisiología , Polifenoles/farmacología , Bibliotecas de Moléculas Pequeñas , Replicación Viral/efectos de los fármacos
10.
Cancers (Basel) ; 10(5)2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29738494

RESUMEN

Intrinsically disordered protein YAP (yes-associated protein) interacts with TEADs transcriptional factors family (transcriptional enhancer associated domain) creating three interfaces. Interface 3, between the Ω-loop of YAP and a shallow pocket of TEAD was identified as the most important TEAD zone for YAP-TEAD interaction. Using the first X-ray structure of the hYAP50⁻71-hTEAD1209⁻426 complex (PDB 3KYS) published in 2010, a protein-protein interaction inhibitors-enriched library (175,000 chemical compounds) was screened against this hydrophobic pocket of TEAD. Four different chemical families have been identified and evaluated using biophysical techniques (thermal shift assay, microscale thermophoresis) and in cellulo assays (luciferase activity in transfected HEK293 cells, RTqPCR in MDA-MB231 cells). A first promising hit with micromolar inhibition in the luciferase gene reporter assay was discovered. This hit also decreased mRNA levels of TEAD target genes.

11.
J Med Chem ; 61(12): 5057-5072, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29251924

RESUMEN

Transcriptional enhanced associate domain (TEAD) proteins are the downstream effectors of the Hippo signaling pathway that regulate cell proliferation and stem cell functions. TEADs are unable to activate transcription and require the help of coactivators such as YAP, TAZ, VgLL, and p160 proteins. The expression of TEAD family is up-regulated in many cancer types including gastric, colorectal, breast, and prostate cancers, which is correlated with poor survival in patients. Pharmacological modulators of TEADs could therefore find application in cancer treatment and regenerative medicine. In this review, we present the very recent available structures of TEADs with or without coactivators or inhibitors and discuss the potential therapeutic application of their ligands.


Asunto(s)
Proteínas de Unión al ADN/química , Terapia Molecular Dirigida/métodos , Proteínas Nucleares/química , Factores de Transcripción/química , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Vía de Señalización Hippo , Humanos , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/agonistas , Proteínas/antagonistas & inhibidores , Proteínas/química , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Verteporfina/análogos & derivados
12.
Antiviral Res ; 143: 205-217, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28450058

RESUMEN

We previously reported low sensitivity of the hepatitis B virus (HBV) ribonuclease H (RNaseH) enzyme to inhibition by N-hydroxyisoquinolinedione (HID) compounds. Subsequently, our biochemical RNaseH assay was found to have a high false negative rate for predicting HBV replication inhibition, leading to underestimation of the number of HIDs that inhibit HBV replication. Here, 39 HID compounds and structurally related polyoxygenated heterocycles (POH), N-hydroxypyridinediones (HPD), and flutimides were screened for inhibition of HBV replication in vitro. Inhibiting the HBV RNaseH preferentially blocks synthesis of the positive-polarity DNA strand and causes accumulation of RNA:DNA heteroduplexes. Eleven HIDs and one HPD preferentially inhibited HBV positive-polarity DNA strand accumulation. EC50s ranged from 0.69 µM to 19 µM with therapeutic indices from 2.4 to 71. Neither the HIDs nor the HPD had an effect on the ability of the polymerase to elongate DNA strands in capsids. HBV RNaseH inhibition by the HIDs was confirmed with an improved RNaseH assay and by detecting accumulation RNA:DNA heteroduplexes in HBV capsids from cells treated with a representative HID. Therefore, the HID scaffold is more promising for anti-HBV drug discovery than we originally reported, and the HPD scaffold may hold potential for antiviral development. The preliminary structure-activity relationship will guide optimization of the HID/HPDs as HBV inhibitors.


Asunto(s)
Antivirales/antagonistas & inhibidores , Antivirales/química , Virus de la Hepatitis B/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Antivirales/administración & dosificación , Proteínas de la Cápside/genética , Línea Celular Tumoral , Chlorocebus aethiops , Replicación del ADN/efectos de los fármacos , ADN Viral/efectos de los fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Hepatitis B/virología , Virus de la Hepatitis B/enzimología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Humanos , Pruebas de Sensibilidad Microbiana , Piperazinas/farmacología , Ribonucleasa H/efectos de los fármacos , Relación Estructura-Actividad , Células Vero
13.
ChemMedChem ; 12(12): 954-961, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28334506

RESUMEN

Porphyrin derivatives, in particular verteporfin (VP), a photosensitizer initially designed for cancer therapy, have been identified as inhibitors of the YAP-TEAD interaction and transcriptional activity. Herein we report the efficient convergent synthesis of the dipyrrin half of protoporphyrin IX dimethyl ester (PPIX-DME), in which the sensitive vinyl group was created at the final stage by a dehydroiodination reaction. Two other dipyrrin derivatives were synthesized, including dipyrrin 19 [(Z)-2-((3,5-dimethyl-4-vinyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-4-vinyl-1H-pyrrole], containing two vinyl groups. We found that VP and dipyrrin 19 showed significant inhibitory effects on TEAD transcriptional activity in MDA-MB-231 human breast cancer cells, whereas other compounds did not show significant changes. In addition, we observed a marked decrease in both YAP and TAZ levels following VP treatment, whereas dipyrrin 19 treatment primarily decreased the levels of YAP and receptor kinase AXL, a downstream target of YAP. Together, our data suggest that, due to their chemical structures, porphyrin- and dipyrrin-related derivatives can directly target YAP and/or TAZ proteins and inhibit TEAD transcriptional activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Fosfoproteínas/antagonistas & inhibidores , Fármacos Fotosensibilizantes/farmacología , Porfirinas/síntesis química , Porfirinas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Aciltransferasas , Línea Celular Tumoral , Vía de Señalización Hippo , Humanos , Estructura Molecular , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Porfirinas/química , Relación Estructura-Actividad , Verteporfina , Proteínas Señalizadoras YAP
14.
Eur J Med Chem ; 117: 256-68, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27105029

RESUMEN

Herein, we report further insight into the biological activities displayed by the 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) scaffold. Previous studies have evidenced the marked fruitful effect of substitution of this two-metal binding pharmacophore at position 4 by phenyl and benzyl carboxamido chains. Strong human immunodeficiency virus type 1 integrase (HIV-1 IN) inhibitors in the low nanomolar range with micromolar (even down to low nanomolar) anti-HIV activities were obtained. Keeping this essential 4-carboxamido function, we investigated the influence of the replacement of phenyl and benzyl groups by various alkyl chains. This study shows that the recurrent halogenobenzyl pharmacophore found in the INSTIs can be efficiently replaced by an n-alkyl group. With an optimal length of six carbons, we observed a biological profile and a high barrier to resistance equivalent to those of a previously reported hit compound bearing a 4-fluorobenzyl group.


Asunto(s)
Inhibidores de Integrasa VIH/química , Isoquinolinas/química , Alquilación , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Línea Celular , Farmacorresistencia Viral/efectos de los fármacos , Inhibidores de Integrasa VIH/farmacología , Humanos , Isoquinolinas/farmacología , Relación Estructura-Actividad
15.
Curr Med Chem ; 23(11): 1171-84, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26980565

RESUMEN

BACKGROUND: Verteporfin is a porphyrinic photosensitizer clinically used for the photodynamic treatment of age-related macular degeneration. It has been identified almost simultaneously as a YAP/TEAD and an autophagosome inhibitor. Over the last few years, YAP (TAZ), the downstream effectors of the Hippo pathway, have emerged as promising anticancer targets, as shown by several experimental lines of evidence, showing the overproduction of YAP in several cancers. However, YAP was also found to be closely connected to autophagy, mitochondria and reactive oxygen/nitrogen species. We herein, review the recent studies where VP was used without photoactivation as a YAP/TEAD inhibitor or protein oligomerization promoter, focusing on its effects on the YAP/TEAD gene targets and other biomarkers related to autophagy. RESULTS: Since the identification of VP as YAP/TEAD inhibitor, several in vitro and in vivo studies have revealed the new potential of this molecule in different cancers, where YAP is overexpressed. However, detailed structural information about its interaction with YAP is still lacking. Concomitantly, VP was identified as autophagosome inhibitor by promoting oligomerization of p62. Moreover, VP proves to be tumor-selective proteotoxic (by oligomerization of p62, STAT3) in colorectal cancer. Knowledge on the biological properties of the only YAP inhibitor available to date is vital for its pharmacological use on cellular and animal models. CONCLUSION: VP is a multi-target drug interacting with several proteins implicated in major cellular processes. Although this does not impact its clinical use, VP does not seem to be the ideal drug for pharmacological inhibitions of YAP/TEAD.


Asunto(s)
Degeneración Macular/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/uso terapéutico , Animales , Humanos , Verteporfina
16.
Expert Opin Drug Discov ; 10(11): 1243-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26517818

RESUMEN

INTRODUCTION: Integration of the viral genome into the host cell chromatin is a central step in the replication cycle of HIV. Blocking the viral integrase (IN) enzyme therefore provides an attractive therapeutic strategy, as evidenced by the recent clinical approval of three IN strand transfer inhibitors. Dolutegravir is a therapy that is unique in its ability to evade HIV drug resistance in treatment-naïve patients. AREAS COVERED: This review starts by providing a brief summary of the history of HIV-1 IN inhibitors. The authors follow this with details of the discovery and preclinical and clinical developments of dolutegravir. Finally, the authors provide details of dolutegravir's post-launch including the launch of the combination pill of dolutegravir, abacavir and lamivudine in August 2014. EXPERT OPINION: The launch of raltegravir, the first IN inhibitor from Merck & Co., has created new hopes for the patient. Indeed, pharmaceutical companies have not lost courage by attempting to address the major drawbacks of this first-in-class molecule. And while the drug elvitegravir has been inserted into a four-drug combination pill providing a once-daily dosing alternative, dolutegravir has demonstrated superiority in terms of its efficacy and resistance.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Animales , Didesoxinucleósidos/administración & dosificación , Combinación de Medicamentos , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Viral , Infecciones por VIH/virología , Inhibidores de Integrasa VIH/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Humanos , Lamivudine/administración & dosificación , Oxazinas , Piperazinas , Piridonas
17.
Antiviral Res ; 108: 48-55, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24858512

RESUMEN

Nucleos(t)ide analog drugs profoundly suppress Hepatitis B virus (HBV) replication but rarely cure the infection, so therapy is usually life-long. The nucleos(t)ide analogs inhibit the viral DNA polymerase and often push HBV to the brink of extinction, so it may be possible to eradicate HBV by suppressing HBV replication further. The HBV ribonuclease H (RNaseH) is a logical new drug target because it is the second of only two viral enzymes essential for viral replication. We recently developed a low throughput screening pipeline for inhibitors of the HBV RNaseH and viral replication. Here, we screened a series of twenty-three nitrogen-based polyoxygenated heterocycles including sixteen 2-hydroxyisoquinoline-1,3(2H,4H)-dione derivatives for anti-HBV RNaseH activity. Nine compounds inhibited the HBV RNaseH, but activity was marginal for eight of them. Compound #1 [2-hydroxyisoquinoline-1,3(2H,4H)-dione, HID] was the best hit with an IC50 of 28.1µM and an EC50 of 4.2µM. It preferentially suppressed accumulation of the viral plus-polarity DNA strand in replication inhibition assays, indicating that replication was blocked due to suppression of HBV RNaseH activity. It had a CC50 of 75µM, yielding a therapeutic index of ∼18. The EC50 value was 7-fold lower than the IC50, possibly due to cellular retention or metabolism of the compound, or higher affinity for the full-length enzyme than the recombinant form used for screening. These data indicate that the 2-hydroxyisoquinoline-1,3(2H,4H)-diones will have different structure-activity relationships for the HBV and HIV RNaseHs. Therefore, HID compounds may provide a foundation for development of more effective RNaseH inhibitors of HBV replication.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/enzimología , Isoquinolinas/farmacología , Ribonucleasa H/antagonistas & inhibidores , Línea Celular , Virus de la Hepatitis B/fisiología , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
18.
J Med Chem ; 57(11): 4640-60, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24793360

RESUMEN

We report herein further insight into the biological activities displayed by a series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs). Substitution of the N-hydroxyimide two-metal binding pharmacophore at position 4 by carboxamido side chains was previously shown by us to be fruitful for this scaffold, since strong human immunodeficiency virus type 1 integrase (HIV-1 IN) inhibitors in the low nanomolar range associated with low micromolar anti-HIV activities were obtained. We investigated the influence of substitution at position 7 on biological activity. Introduction of electron-withdrawing functional groups such as the nitro moiety at position 7 led to a noticeable improvement of antiviral activity, down to low nanomolar anti-HIV potencies, with advantageous therapeutic indexes going close to those of the clinically used raltegravir and retained potencies against a panel of IN mutants.


Asunto(s)
Inhibidores de Integrasa VIH/síntesis química , VIH-1/efectos de los fármacos , Isoquinolinas/síntesis química , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Línea Celular Tumoral , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP3A , Inhibidores del Citocromo P-450 CYP3A , Farmacorresistencia Viral , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , VIH-1/genética , Humanos , Isoquinolinas/química , Isoquinolinas/farmacología , Simulación del Acoplamiento Molecular , Mutación , Relación Estructura-Actividad
19.
ACS Chem Biol ; 8(6): 1187-94, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23517458

RESUMEN

Clinical HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) potently inhibit viral replication with a dramatic drop in viral load. However, the emergence of resistance to these drugs underscores the need to develop next-generation IN catalytic site inhibitors with improved resistance profiles. Here, we present a novel candidate IN inhibitor, MB-76, a 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) derivative. MB-76 potently blocks HIV integration and is active against a panel of wild-type as well as raltegravir-resistant HIV-1 variants. The lack of cross-resistance with other INSTIs and the absence of resistance selection in cell culture indicate the potential of HID derivatives compared to previous INSTIs. A crystal structure of MB-76 bound to the wild-type prototype foamy virus intasome reveals an overall binding mode similar to that of INSTIs. Its compact scaffold displays all three Mg(2+) chelating oxygen atoms from a single ring, ensuring that the only direct contacts with IN are the invariant P214 and Q215 residues of PFV IN (P145 and Q146 for HIV-1 IN, respectively), which may partially explain the difficulty of selecting replicating resistant variants. Moreover, the extended, dolutegravir-like linker connecting the MB-76 metal chelating core and p-fluorobenzyl group can provide additional flexibility in the perturbed active sites of raltegravir-resistant INs. The compound identified represents a potential candidate for further (pre)clinical development as next-generation HIV IN catalytic site inhibitor.


Asunto(s)
Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH-1/enzimología , Isoquinolinas/química , Isoquinolinas/farmacología , Dominio Catalítico/efectos de los fármacos , Línea Celular , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Humanos , Modelos Moleculares
20.
ACS Med Chem Lett ; 4(7): 606-11, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24900718

RESUMEN

A series of 2-hydroxy-1,3-dioxoisoquinoline-4-carboxamides featuring an N-hydroxyimide chelating functionality was evaluated for their inhibitory properties against human immunodeficiency virus type 1 integrase (HIV-1 IN). Several derivatives displayed low nanomolar IC50 values comparable to that of the clinically used raltegravir. A marked effect of one compound on both primary IN-catalyzed reactions, strand transfer (ST), and 3' processing (3'-P), emphasizes a novel IN inhibition mechanism establishing it as a potential new generation IN inhibitor. Substitution of the 2-hydroxyisoquinoline-1,3-dione scaffold at position 4 by carboxamido chains was beneficial for antiviral activity since reproducible low micromolar anti-HIV activities were obtained for the first time within this scaffold.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA