Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stress Chaperones ; 28(6): 1001-1012, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38001371

RESUMEN

Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes. Our results showed that hHep1 interacts peripherally with liposomes formed by phosphatidylserine and cardiolipin and remains partially structured, exhibiting similar affinities for both. In addition, after being added to the cell membrane, recombinant hHep1 was incorporated by cells in a dose-dependent manner. Interestingly, the association of HSPA9 with hHep1 improved the incorporation of these proteins into the lipid bilayer. These results demonstrated that hHep1 can interact with lipids also present in the plasma membrane, indicating roles for this cochaperone outside of mitochondria.


Asunto(s)
Membrana Dobles de Lípidos , Liposomas , Humanos , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo
2.
Cell Stress Chaperones ; 26(4): 671-684, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34003451

RESUMEN

Heat shock proteins (HSP) are critical elements for the preservation of cellular homeostasis by participating in an array of biological processes. In addition, HSP play an important role in cellular protection from various environmental stresses. HSP are part of a large family of different molecular mass polypeptides, displaying various expression patterns, subcellular localizations, and diversity functions. An unexpected observation was the detection of HSP on the cell surface. Subsequent studies have demonstrated that HSP have the ability to interact and penetrate lipid bilayers by a process initiated by the recognition of phospholipid heads, followed by conformational changes, membrane insertion, and oligomerization. In the present study, we described the interaction of HSPA8 (HSC70), the constitutive cytosolic member of the HSP70 family, with lipid membranes. HSPA8 showed high selectivity for negatively charged phospholipids, such as phosphatidylserine and cardiolipin, and low affinity for phosphatidylcholine. Membrane insertion was mediated by a spontaneous process driven by increases in entropy and diminished by the presence of ADP or ATP. Finally, HSPA8 was capable of driving into the lipid bilayer HSP90 that does not display any lipid biding capacity by itself. This observation suggests that HSPA8 may act as a membrane chaperone.


Asunto(s)
Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Fosfolípidos/metabolismo , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/fisiología , Humanos , Liposomas/metabolismo , Chaperonas Moleculares/metabolismo
3.
Cell Stress Chaperones ; 25(6): 979-991, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32725381

RESUMEN

Heat shock proteins (HSPs) are ubiquitous polypeptides expressed in all living organisms that participate in several basic cellular processes, including protein folding, from which their denomination as molecular chaperones originated. There are several HSPs, including HSPA5, also known as 78-kDa glucose-regulated protein (GRP78) or binding immunoglobulin protein (BIP) that is an ER resident involved in the folding of polypeptides during their translocation into this compartment prior to the transition to the Golgi network. HSPA5 is detected on the surface of cells or secreted into the extracellular environment. Surface HSPA5 has been proposed to have various roles, such as receptor-mediated signal transduction, a co-receptor for soluble ligands, as well as a participant in tumor survival, proliferation, and resistance. Recently, surface HSPA5 has been reported to be a potential receptor of some viruses, including the novel SARS-CoV-2. In spite of these observations, the association of HSPA5 within the plasma membrane is still unclear. To gain information about this process, we studied the interaction of HSPA5 with liposomes made of different phospholipids. We found that HSPA5 has a high affinity for negatively charged phospholipids, such as palmitoyl-oleoyl phosphoserine (POPS) and cardiolipin (CL). The N-terminal and C-terminal domains of HSPA5 were independently capable of interacting with negatively charged phospholipids, but to a lesser extent than the full-length protein, suggesting that both domains are required for the maximum insertion into membranes. Interestingly, we found that the interaction of HSPA5 with negatively charged liposomes promotes an oligomerization process via intermolecular disulfide bonds in which the N-terminus end of the protein plays a critical role.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Liposomas/metabolismo , Fosfolípidos/química , Secuencia de Aminoácidos , Betacoronavirus/aislamiento & purificación , Betacoronavirus/metabolismo , COVID-19 , Calorimetría , Cardiolipinas/química , Cardiolipinas/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Liposomas/química , Pandemias , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Fosfolípidos/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , Dominios Proteicos , Multimerización de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2 , Alineación de Secuencia
4.
Int J Biol Macromol ; 118(Pt A): 693-706, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29959008

RESUMEN

Molecular chaperones and co-chaperones play an essential role in the life cycles of protozoa belonging to the genus Leishmania. The small glutamine-rich TPR-containing protein (SGT) is a co-chaperone that can be divided into three domains: N-terminal, tetratricopeptide (TPR) and C-terminal. The TPR domain is responsible for interactions with both Hsp70 and Hsp90; however, the mechanism of interaction and the functionality of SGT are unclear. In this context, we present the structural and functional characterization of Leishmania braziliensis SGT (LbSGT), aiming to elucidate how this co-chaperone interacts with the Hsp90/Hsp70 chaperone machinery. Structurally, the recombinant LbSGT behaves as an α-helical, multidomain and elongated dimer in solution. Despite their low amino acid sequence identity and similarity, LbSGT shares structural properties and domain organization with the Hsp70-interacting protein (HIP) co-chaperone. Functionally, LbSGT is a cognate protein in L. braziliensis promastigote cells and interacts indiscriminately, with similar affinities, with both Hsp90 and Hsp70 chaperones, capable of working as an adaptor protein. Sequence analysis indicates that LbSGT interacts via a dicarboxylate clamp, the same mechanism used by the Hsp90-Hsp70-organizing protein (HOP) co-chaperone. These results suggest that SGT can develop the same function as HOP but using the HIP structural scaffold.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Leishmania braziliensis , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Análisis de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...