Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Biol Chem ; 291(8): 3967-81, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26703465

RESUMEN

Angiotensin II (Ang II) is a vasopressive hormone but is also a potent activator of cellular migration. We have previously shown that it can promote the activation of the GTPase ARF6 in a heterologous overexpressing system. The molecular mechanisms by which receptors control the activation of this small G protein remain, however, largely unknown. Furthermore, how ARF6 coordinates the activation of complex cellular responses needs to be further elucidated. In this study, we demonstrate that Ang II receptors engage ß-arrestin, but not Gq, to mediate ARF6 activation in HEK 293 cells. To further confirm the key role of ß-arrestin proteins, we overexpressed ß-arrestin2-(1-320), a dominant negative mutant known to block receptor endocytosis. We show that expression of this truncated construct does not support the activation of the GTPase nor cell migration. Interestingly, ß-arrestin2 can interact with the ARF guanine nucleotide exchange factor ARNO, although the C-terminally lacking mutant does not. We finally examined whether receptor endocytosis controlled ARF6 activation and cell migration. Although the clathrin inhibitor PitStop2 did not impact the ability of Ang II to activate ARF6, cell migration was markedly impaired. To further show that ARF activation regulates key signaling events leading to migration, we also examined MAPK activation. We demonstrate that this signaling axis is relevant in smooth muscle cells of the vasculature. Altogether, our findings show for the first time that Ang II receptor signaling to ß-arrestin regulates ARF6 activation. These proteins together control receptor endocytosis and ultimately cell migration.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Angiotensina II/metabolismo , Arrestinas/metabolismo , Movimiento Celular/fisiología , Endocitosis/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Angiotensina II/genética , Animales , Arrestinas/genética , Movimiento Celular/efectos de los fármacos , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Ratas , Ratas Wistar , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Sulfonamidas/farmacología , Tiazolidinas/farmacología , beta-Arrestinas
3.
Curr Biol ; 23(7): 581-7, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23523246

RESUMEN

In metazoans, unequal partitioning of the cell-fate determinant Numb underlies the generation of distinct cell fates following asymmetric cell division [1-5]. In Drosophila, during asymmetric division of the sensory organ precursor (SOP) cell, Numb is unequally inherited by the pIIb daughter cell, where it antagonizes Notch [1, 6-8]. Numb inhibits Notch partly through inhibiting the plasma membrane localization of Sanpodo (Spdo), a transmembrane protein required for Notch signaling during asymmetric cell division [9, 10]. Numb, by binding to Spdo and α-Adaptin, was proposed to mediate Spdo endocytosis alone or bound to Notch in the pIIb cell, thereby preventing Notch activation [11-16]. However, in addition to endocytosis, Numb also controls the postendocytic trafficking and degradation of Notch in mammals [17, 18] and negatively regulates basolateral recycling in C. elegans [19, 20]. Thus, whether Numb promotes the endocytosis of Spdo is a question that requires experimental demonstration and is therefore investigated in this article. Based on internalization assays, we show that Spdo endocytosis is restricted to cells in interphase and requires AP-2 activity. Surprisingly, the bulk endocytosis of Spdo occurs properly in numb mutant SOP, indicating that Numb does not regulate the steady-state localization of Spdo via Spdo internalization. We report that Numb genetically and physically interacts with AP-1, a complex regulating the basolateral recycling of Spdo [21]. In numb mutant organs, Spdo is efficiently internalized and recycled back to the plasma membrane. We propose that Numb acts in concert with AP-1 to control the endocytic recycling of Spdo to regulate binary-fate decisions.


Asunto(s)
División Celular Asimétrica/fisiología , Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Endocitosis/fisiología , Hormonas Juveniles/metabolismo , Subunidades alfa de Complejo de Proteína Adaptadora/metabolismo , Animales , Membrana Celular/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Inmunoprecipitación , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Células-Madre Neurales/fisiología , Receptores Notch/antagonistas & inhibidores , Células Receptoras Sensoriales/fisiología , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-2/metabolismo
4.
Curr Biol ; 21(1): 87-95, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21194948

RESUMEN

In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.


Asunto(s)
Cadherinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Receptores Notch/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Cadherinas/genética , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Transporte de Proteínas/fisiología , Receptores Notch/genética , Órganos de los Sentidos/embriología , Órganos de los Sentidos/metabolismo , Factor de Transcripción AP-1/genética
5.
Cell Signal ; 21(7): 1045-53, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19249352

RESUMEN

Cell migration is a fundamental biological process involved in normal physiology. Altered motile phenotypes are however often associated with the development and progression of diseases such as cancer and atherosclerosis. Remodeling of the actin cytoskeleton is required for cell shape changes and is controlled by a broad variety of cellular proteins. Interestingly, several extracellular stimuli can promote actin reorganization and result in enhanced cell migration. Namely, G protein-coupled receptors (GPCRs), which are activated by factors ranging from small amines, to hormones, and chemokines, initiate signalling cascades resulting in cell shape changes, formation of a migrating front (leading edge) and altered adhesion. GPCRs are heptahelical membrane proteins, which classically transmit signal via the activation of heterotrimeric G proteins. Sustained stimulation leads to the activation of G protein-coupled receptor kinases (GRKs) and the recruitment of arrestin proteins, which engage alternative signalling pathways. In this review, we will discuss the role of GPCR mediated signal transduction and review their importance in the regulation of actin remodeling leading to cell migration.


Asunto(s)
Movimiento Celular , Receptores Acoplados a Proteínas G/metabolismo , Animales , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/genética
6.
J Biol Chem ; 283(52): 36425-34, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18990689

RESUMEN

Activation of intracellular signaling pathways by growth factors is one of the major causes of cancer development and progression. Recent studies have demonstrated that monomeric G proteins of the Ras family are key regulators of cell proliferation, migration, and invasion. Using an invasive breast cancer cell lines, we demonstrate that the ADP-ribosylation factor 1 (ARF1), a small GTPase classically associated with the Golgi, is an important regulator of the biological effects induced by epidermal growth factor. Here, we show that this ARF isoform is activated following epidermal growth factor stimulation and that, in MDA-MB-231 cells, ARF1 is found in dynamic plasma membrane ruffles. Inhibition of endogenous ARF1 expression results in the inhibition of breast cancer cell migration and proliferation. The underlying mechanism involves the activation of the phosphatidylinositol 3-kinase pathway. Our data demonstrate that depletion of ARF1 markedly impairs the recruitment of the phosphatidylinositol 3-kinase catalytic subunit (p110alpha) to the plasma membrane, and the association of the regulatory subunit (p85alpha) to the activated receptor. These results uncover a novel molecular mechanism by which ARF1 regulates breast cancer cell growth and invasion during cancer progression.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Neoplasias de la Mama/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Catálisis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I , Progresión de la Enfermedad , Activación Enzimática , Aparato de Golgi/metabolismo , Humanos , Microscopía Confocal
7.
Cell Signal ; 19(11): 2370-8, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17719203

RESUMEN

We have previously shown that the ADP-ribosylation factor 6 (ARF6), a small GTP-binding protein, is important for the internalization of several G protein-coupled receptors. Here, we propose to elucidate the molecular steps controlled by ARF6 in the endocytic process of the angiotensin II type 1 receptor (ATR), a model receptor being internalized via the clathrin-coated vesicle pathway. In HEK 293 cells, angiotensin II stimulation leads to the formation of a complex including ARF6, the beta-subunit of AP-2 and the heavy chain of clathrin. In vitro experiments indicate that the interactions between ARF6 and the beta-subunit of AP-2 as well as with the heavy chain of clathrin are direct, and dependent upon the nature of the nucleotide bound to ARF6. beta2-adaptin binds to ARF6-GDP while clathrin preferentially interacts with ARF6 when loaded with GTP. These interactions have an important physiological consequence. Indeed, depletion of ARF6 prevents the agonist-dependent recruitment of beta2-adaptin and clathrin to the activated ATR. Interestingly, in these cells, the plasma membrane redistribution of either beta2-adaptin-GFP or betaarrestin 2-GFP, following Ang II stimulation, is altered. Both proteins are defective in clustering into large punctated structure at the plasma membrane compared to control conditions. Taken together, these results suggest that the cycling of ARF6 between its GDP-and GTP-bound states coordinates the recruitment of AP-2 and clathrin to activated receptors during the endocytic process.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Clatrina/metabolismo , Endocitosis , Receptor de Angiotensina Tipo 1/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/deficiencia , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Angiotensina II/farmacología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cadenas Pesadas de Clatrina/metabolismo , Endocitosis/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo
8.
Mol Biol Cell ; 18(2): 501-11, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17122362

RESUMEN

ARF6 and Rac1 are small GTPases known to regulate remodelling of the actin cytoskeleton. Here, we demonstrate that these monomeric G proteins are sequentially activated when HEK 293 cells expressing the angiotensin type 1 receptor (AT(1)R) are stimulated with angiotensin II (Ang II). After receptor activation, ARF6 and Rac1 transiently form a complex. Their association is, at least in part, direct and dependent on the nature of the nucleotide bound to both small G proteins. ARF6-GTP preferentially interacts with Rac1-GDP. AT(1)R expressing HEK293 cells ruffle, form membrane protrusions, and migrate in response to agonist treatment. ARF6, but not ARF1, depletion using small interfering RNAs recapitulates the ruffling and migratory phenotype observed after Ang II treatment. These results suggest that ARF6 depletion or Ang II treatment are functionally equivalent and point to a role for endogenous ARF6 as an inhibitor of Rac1 activity. Taken together, our findings reveal a novel function of endogenously expressed ARF6 and demonstrate that by interacting with Rac1, this small GTPase is a central regulator of the signaling pathways leading to actin remodeling.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Membrana Celular/fisiología , Movimiento Celular , Receptor de Angiotensina Tipo 1/agonistas , Proteína de Unión al GTP rac1/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/antagonistas & inhibidores , Factores de Ribosilacion-ADP/genética , Actinas/metabolismo , Angiotensina II/farmacología , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/química , Células Cultivadas , Citoesqueleto/metabolismo , Factores de Intercambio de Guanina Nucleótido/análisis , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Transporte de Proteínas , Interferencia de ARN , Factores de Intercambio de Guanina Nucleótido Rho , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética
9.
J Neurochem ; 88(6): 1398-405, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15009640

RESUMEN

Dopamine neurons have been suggested to use glutamate as a cotransmitter. To identify the basis of such a phenotype, we have examined the expression of the three recently identified vesicular glutamate transporters (VGLUT1-3) in postnatal rat dopamine neurons in culture. We found that the majority of isolated dopamine neurons express VGLUT2, but not VGLUT1 or 3. In comparison, serotonin neurons express only VGLUT3. Single-cell RT-PCR experiments confirmed the presence of VGLUT2 mRNA in dopamine neurons. Arguing for phenotypic heterogeneity among axon terminals, we find that only a proportion of terminals established by dopamine neurons are VGLUT2-positive. Taken together, our results provide a basis for the ability of dopamine neurons to release glutamate as a cotransmitter. A detailed analysis of the conditions under which DA neurons gain or loose a glutamatergic phenotype may provide novel insight into pathophysiological processes that underlie diseases such as schizophrenia, Parkinson's disease and drug dependence.


Asunto(s)
Proteínas Portadoras/biosíntesis , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Proteínas de Transporte de Membrana , Neuronas/metabolismo , Sinapsis/metabolismo , Proteínas de Transporte Vesicular , Sistemas de Transporte de Aminoácidos Acídicos/biosíntesis , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Proteínas Portadoras/genética , Células Cultivadas , Inmunohistoquímica , Mesencéfalo/citología , Mesencéfalo/metabolismo , Neuronas/citología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serotonina/biosíntesis , Factores de Tiempo , Tirosina 3-Monooxigenasa/genética , Proteína 1 de Transporte Vesicular de Glutamato , Proteína 2 de Transporte Vesicular de Glutamato , Proteínas de Transporte Vesicular de Glutamato , Ácido gamma-Aminobutírico/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA