Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Oncotarget ; 8(39): 64714-64727, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029388

RESUMEN

mTORC1 hyperactivation drives the multi-organ hamartomatous disease tuberous sclerosis complex (TSC). Rapamycin inhibits mTORC1, inducing partial tumor responses; however, the tumors regrow following treatment cessation. We discovered that the oncogenic miRNA, miR-21, is increased in Tsc2-deficient cells and, surprisingly, further increased by rapamycin. To determine the impact of miR-21 in TSC, we inhibited miR-21 in vitro. miR-21 inhibition significantly repressed the tumorigenic potential of Tsc2-deficient cells and increased apoptosis sensitivity. Tsc2-deficient cells' clonogenic and anchorage independent growth were reduced by ∼50% (p<0.01) and ∼75% (p<0.0001), respectively, and combined rapamycin treatment decreased soft agar growth by ∼90% (p<0.0001). miR-21 inhibition also increased sensitivity to apoptosis. Through a network biology-driven integration of RNAseq data, we discovered that miR-21 promotes mitochondrial adaptation and homeostasis in Tsc2-deficient cells. miR-21 inhibition reduced mitochondrial polarization and function in Tsc2-deficient cells, with and without co-treatment with rapamycin. Importantly, miR-21 inhibition limited Tsc2-deficient tumor growth in vivo, reducing tumor size by approximately 3-fold (p<0.0001). When combined with rapamcyin, miR-21 inhibition showed even more striking efficacy, both during treatment and after treatment cessation, with a 4-fold increase in median survival following rapamycin cessation (p=0.0008). We conclude that miR-21 promotes mTORC1-driven tumorigenesis via a mechanism that involves the mitochondria, and that miR-21 is a potential therapeutic target for TSC-associated hamartomas and other mTORC1-driven tumors, with the potential for synergistic efficacy when combined with rapalogs.

3.
J Clin Invest ; 126(9): 3313-35, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27548520

RESUMEN

Dysregulation of vascular stiffness and cellular metabolism occurs early in pulmonary hypertension (PH). However, the mechanisms by which biophysical properties of the vascular extracellular matrix (ECM) relate to metabolic processes important in PH remain undefined. In this work, we examined cultured pulmonary vascular cells and various types of PH-diseased lung tissue and determined that ECM stiffening resulted in mechanoactivation of the transcriptional coactivators YAP and TAZ (WWTR1). YAP/TAZ activation modulated metabolic enzymes, including glutaminase (GLS1), to coordinate glutaminolysis and glycolysis. Glutaminolysis, an anaplerotic pathway, replenished aspartate for anabolic biosynthesis, which was critical for sustaining proliferation and migration within stiff ECM. In vitro, GLS1 inhibition blocked aspartate production and reprogrammed cellular proliferation pathways, while application of aspartate restored proliferation. In the monocrotaline rat model of PH, pharmacologic modulation of pulmonary vascular stiffness and YAP-dependent mechanotransduction altered glutaminolysis, pulmonary vascular proliferation, and manifestations of PH. Additionally, pharmacologic targeting of GLS1 in this model ameliorated disease progression. Notably, evaluation of simian immunodeficiency virus-infected nonhuman primates and HIV-infected subjects revealed a correlation between YAP/TAZ-GLS activation and PH. These results indicate that ECM stiffening sustains vascular cell growth and migration through YAP/TAZ-dependent glutaminolysis and anaplerosis, and thereby link mechanical stimuli to dysregulated vascular metabolism. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in PH.


Asunto(s)
Matriz Extracelular/metabolismo , Hipertensión Pulmonar/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Rigidez Vascular , Adolescente , Adulto , Anciano , Animales , Niño , Colágeno/metabolismo , Células Endoteliales/metabolismo , Femenino , Ácido Glutámico/metabolismo , Humanos , Lactante , Masculino , Mecanotransducción Celular , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Fosfoproteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Adulto Joven
4.
Sci Rep ; 5: 18277, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26667495

RESUMEN

The molecular origins of fibrosis affecting multiple tissue beds remain incompletely defined. Previously, we delineated the critical role of the control of extracellular matrix (ECM) stiffening by the mechanosensitive microRNA-130/301 family, as activated by the YAP/TAZ co-transcription factors, in promoting pulmonary hypertension (PH). We hypothesized that similar mechanisms may dictate fibrosis in other tissue beds beyond the pulmonary vasculature. Employing an in silico combination of microRNA target prediction, transcriptomic analysis of 137 human diseases and physiologic states, and advanced gene network modeling, we predicted the microRNA-130/301 family as a master regulator of fibrotic pathways across a cohort of seemingly disparate diseases and conditions. In two such diseases (pulmonary fibrosis and liver fibrosis), inhibition of microRNA-130/301 prevented the induction of ECM modification, YAP/TAZ, and downstream tissue fibrosis. Thus, mechanical forces act through a central feedback circuit between microRNA-130/301 and YAP/TAZ to sustain a common fibrotic phenotype across a network of human physiologic and pathophysiologic states. Such re-conceptualization of interconnections based on shared systems of disease and non-disease gene networks may have broad implications for future convergent diagnostic and therapeutic strategies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/genética , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Benzoatos/farmacología , Bencilaminas/farmacología , Modelos Animales de Enfermedad , Matriz Extracelular , Fibrosis , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Fosfoproteínas/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
5.
Cell Rep ; 13(5): 1016-32, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26565914

RESUMEN

Pulmonary hypertension (PH) is a deadly vascular disease with enigmatic molecular origins. We found that vascular extracellular matrix (ECM) remodeling and stiffening are early and pervasive processes that promote PH. In multiple pulmonary vascular cell types, such ECM stiffening induced the microRNA-130/301 family via activation of the co-transcription factors YAP and TAZ. MicroRNA-130/301 controlled a PPAR?-APOE-LRP8 axis, promoting collagen deposition and LOX-dependent remodeling and further upregulating YAP/TAZ via a mechanoactive feedback loop. In turn, ECM remodeling controlled pulmonary vascular cell crosstalk via such mechanotransduction, modulation of secreted vasoactive effectors, and regulation of associated microRNA pathways. In vivo, pharmacologic inhibition of microRNA-130/301, APOE, or LOX activity ameliorated ECM remodeling and PH. Thus, ECM remodeling, as controlled by the YAP/TAZ-miR-130/301 feedback circuit, is an early PH trigger and offers combinatorial therapeutic targets for this devastating disease.


Asunto(s)
Matriz Extracelular/metabolismo , Retroalimentación Fisiológica , Hipertensión Pulmonar/metabolismo , Mecanotransducción Celular , MicroARNs/genética , Factores de Transcripción/metabolismo , Animales , Apolipoproteínas E/metabolismo , Matriz Extracelular/patología , Humanos , Concentración de Iones de Hidrógeno , Hipertensión Pulmonar/patología , Proteínas Relacionadas con Receptor de LDL/metabolismo , Ratones , Ratones Endogámicos C57BL , PPAR gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/genética
7.
J Clin Invest ; 124(8): 3514-28, 2014 08.
Artículo en Inglés | MEDLINE | ID: mdl-24960162

RESUMEN

Development of the vascular disease pulmonary hypertension (PH) involves disparate molecular pathways that span multiple cell types. MicroRNAs (miRNAs) may coordinately regulate PH progression, but the integrative functions of miRNAs in this process have been challenging to define with conventional approaches. Here, analysis of the molecular network architecture specific to PH predicted that the miR-130/301 family is a master regulator of cellular proliferation in PH via regulation of subordinate miRNA pathways with unexpected connections to one another. In validation of this model, diseased pulmonary vessels and plasma from mammalian models and human PH subjects exhibited upregulation of miR-130/301 expression. Evaluation of pulmonary arterial endothelial cells and smooth muscle cells revealed that miR-130/301 targeted PPARγ with distinct consequences. In endothelial cells, miR-130/301 modulated apelin-miR-424/503-FGF2 signaling, while in smooth muscle cells, miR-130/301 modulated STAT3-miR-204 signaling to promote PH-associated phenotypes. In murine models, induction of miR-130/301 promoted pathogenic PH-associated effects, while miR-130/301 inhibition prevented PH pathogenesis. Together, these results provide insight into the systems-level regulation of miRNA-disease gene networks in PH with broad implications for miRNA-based therapeutics in this disease. Furthermore, these findings provide critical validation for the evolving application of network theory to the discovery of the miRNA-based origins of PH and other diseases.


Asunto(s)
Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/genética , MicroARNs/genética , Animales , Apelina , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular , Simulación por Computador , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Redes Reguladoras de Genes , Humanos , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Modelos Biológicos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , PPAR gamma/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Teoría de Sistemas , Regulación hacia Arriba
8.
Antioxid Redox Signal ; 21(8): 1189-201, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24111795

RESUMEN

SIGNIFICANCE: Chronic hypoxia can drive maladaptive responses in numerous organ systems, leading to a multitude of chronic mammalian diseases. Oxygen homeostasis is intimately linked with mitochondrial metabolism, and dysfunction in these systems can combine to form the backbone of hypoxic-ischemic injury in multiple tissue beds. Increased appreciation of the crucial roles of hypoxia-associated miRNA (hypoxamirs) in metabolism adds a new dimension to our understanding of the regulation of hypoxia-induced disease. RECENT ADVANCES: Myriad factors related to glycolysis (e.g., aldolase A and hexokinase II), tricarboxylic acid cycle function (e.g., glutaminase and iron-sulfur cluster assembly protein 1/2), and apoptosis (e.g., p53) have been recently implicated as targets of hypoxamirs. In addition, several hypoxamirs have been implicated in the regulation of the master transcription factor of hypoxia, hypoxia-inducible factor-1α, clarifying how the cellular program of hypoxia is sustained and resolved. CRITICAL ISSUES: Central to the discussion of metabolic change in hypoxia is the Warburg effect, a shift toward anaerobic metabolism that persists after normal oxygen levels have been restored. Many newly discovered targets of hypoxia-driven microRNA converge on pathways known to be involved in this pathological phenomenon and the apoptosis-resistant phenotype associated with it. FUTURE DIRECTIONS: The often synergistic functions of miRNA may make them ideal therapeutic targets. The use of antisense inhibitors is currently being considered in diseases in which hypoxia and metabolic dysregulation predominate. In addition, exploration of pleiotripic miRNA functions will likely continue to offer unique insights into the mechanistic relationships of their downstream target pathways and associated hypoxic phenotypes.


Asunto(s)
MicroARNs/fisiología , Mitocondrias/metabolismo , Animales , Apoptosis , Hipoxia de la Célula , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Glucólisis , Humanos , Hierro/metabolismo , Isquemia/genética , Isquemia/metabolismo , Isquemia/patología , Interferencia de ARN , Transducción de Señal
9.
Eur J Clin Invest ; 43(8): 855-65, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23617881

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is an enigmatic vascular syndrome characterized by increased pulmonary arterial pressure and adverse remodelling of the pulmonary arterioles and often of the right ventricle. Drawing parallels with tumourigenesis, recent endeavours have explored the relationship between metabolic dysregulation and PH pathogenesis. DESIGN: We will discuss the general mechanisms by which cellular stressors such as hypoxia and inflammation alter cellular metabolism. Based on those principles, we will explore the development of a corresponding metabolic pathophenotype in PH, with a focus on WHO Groups I and III, and the implications that these alterations may have for future treatment of this disease. RESULTS: Investigation of metabolic dysregulation in both the pulmonary vasculature and right ventricle during PH pathogenesis has provided a more unifying understanding of how disparate disease triggers coordinate end-stage disease manifestations. Namely, as defined originally in various cancers, the Warburg effect describes a chronic shift in energy production from mitochondrial oxidative phosphorylation to glycolysis. In many cases, this Warburg phenotype may serve as a central causative mechanism for PH progression, largely driving cellular hyperproliferation and resistance to apoptosis. Consequently, new therapeutic strategies have been increasingly pursued that target the Warburg phenotype. Finally, new technologies are increasingly becoming available to probe more completely the complexities of metabolic cellular reprogramming and may reveal distinct metabolic pathways beyond the Warburg effect that drive PH. CONCLUSION: Studies of metabolic dysregulation in PH are just emerging but may offer powerful therapeutic means to prevent or even reverse disease progression at the molecular level.


Asunto(s)
Hipertensión Pulmonar/etiología , Enfermedades Metabólicas/complicaciones , Ciclo del Ácido Cítrico/fisiología , Retículo Endoplásmico/fisiología , Glucólisis/fisiología , Ventrículos Cardíacos/metabolismo , Humanos , Hipertensión Pulmonar/terapia , Hipoxia/etiología , Factor 1 Inducible por Hipoxia/fisiología , Enfermedades Metabólicas/terapia , Proteínas de la Mielina/fisiología , Proteínas Nogo , Neumonía/etiología , Estrés Fisiológico/fisiología
10.
Circulation ; 125(12): 1520-32, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22371328

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. METHODS AND RESULTS: Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21-null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. CONCLUSIONS: A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes/genética , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/genética , MicroARNs/fisiología , Transducción de Señal/genética , Animales , Células Cultivadas , Humanos , Hipertensión Pulmonar/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...