Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(5): 861-879, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565923

RESUMEN

White adipocytes function as major energy reservoirs in humans by storing substantial amounts of triglycerides, and their dysfunction is associated with metabolic disorders; however, the mechanisms underlying cellular specialization during adipogenesis remain unknown. Here, we generate a spatiotemporal proteomic atlas of human adipogenesis, which elucidates cellular remodelling as well as the spatial reorganization of metabolic pathways to optimize cells for lipid accumulation and highlights the coordinated regulation of protein localization and abundance during adipocyte formation. We identify compartment-specific regulation of protein levels and localization changes of metabolic enzymes to reprogramme branched-chain amino acids and one-carbon metabolism to provide building blocks and reduction equivalents. Additionally, we identify C19orf12 as a differentiation-induced adipocyte lipid droplet protein that interacts with the translocase of the outer membrane complex of lipid droplet-associated mitochondria and regulates adipocyte lipid storage by determining the capacity of mitochondria to metabolize fatty acids. Overall, our study provides a comprehensive resource for understanding human adipogenesis and for future discoveries in the field.


Asunto(s)
Adipogénesis , Proteómica , Humanos , Proteómica/métodos , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Gotas Lipídicas/metabolismo , Proteoma/metabolismo , Adipocitos/metabolismo , Diferenciación Celular
2.
Front Nutr ; 10: 1250529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964925

RESUMEN

Obstructive sleep apnea syndrome (OSAS) is associated with chronic intermittent hypoxia (cIH) that causes disturbances in glucose and lipid metabolism. Animals exposed to cIH show lower body weight and food intake, but the protein-energy metabolism has never been investigated. Here, to address the gap, we studied the impact of cIH on nutritional status in rats. A total of 24 male Wistar rats were randomized into 3 groups (n = 8): a control group (Ctrl), a cIH group (cIH) exposed to cIH (30 s 21-30 s 5% fraction of inspired oxygen, 8 h per day, for 14 days), and a pair-fed group (PF) exposed to normoxia with food intake adjusted to the intake of the cIH group rats with anorexia. Body weight and food intake were measured throughout the study. After 14 days, the rats were euthanized, the organs were collected, weighed, and the liver, intestine mucosa, and muscles were snap-frozen to measure total protein content. Food intake was decreased in the cIH group. Body weight was significantly lower in the cIH group only (-11%, p < 0.05). Thymus and liver weight as well as EDL protein content tended to be lower in the cIH group than in the Ctrl and PF groups. Jejunum and ileum mucosa protein contents were lower in the cIH group compared to the PF group. cIH causes a slight impairment of nutritional status and immunity. This pre-clinical work argues for greater consideration of malnutrition in care for OSAS patients. Further studies are warranted to devise an adequate nutritional strategy.

3.
Adipocyte ; : 2283213, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982546

RESUMEN

BACKGROUND: Mature adipocytes are notoriously difficult to study ex vivo and alternative cell culture systems have therefore been developed. One of the most common models are human adipose progenitor cells (hAPCs). Unfortunately, these display replicative senescence after prolonged culture conditions, which limits their use in mechanistic studies. METHODS: Herein, we knocked in human telomerase reverse transcriptase (TERT) into the AAVS1 locus of CD55+ hAPCs derived from abdominal subcutaneous adipose tissue and characterized the cells before and after differentiation into adipocytes. RESULTS: Immortalized TERT-hAPCs retained proliferative and adipogenic capacities comparable to those of early-passage wild type hAPCs for > 80 passages. In line with this, our integrative transcriptomic and proteomic analyses revealed that TERT-hAPCs displayed robust adipocyte expression profiles in comparison to wild type hAPCs. This was confirmed by functional analyses of lipid turnover where TERT-hAPCs exhibited pronounced responses to insulin and pro-lipolytic stimuli such as isoprenaline, dibutyrul cAMP and tumour necrosis factor alpha. In addition, TERT-hAPCs could be readily cultured in both standard 2D and 3D-cultures and proteomic analyses revealed that the spheroid culture conditions improved adipogenesis. CONCLUSION: Through descriptive and functional studies, we demonstrate that immortalization of human CD55+ hAPCs is feasible and results in cells with stable proliferative and adipogenic capacities over multiple passages. As these cells are cryopreservable, they provide the additional advantage over primary cells of allowing repeated studies in both 2D and 3D model systems with the same genetic background. (234/250).

4.
J Cachexia Sarcopenia Muscle ; 14(5): 2003-2015, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667552

RESUMEN

BACKGROUND: Combating malnutrition and cachexia is a core challenge in oncology. To limit muscle mass loss, the use of proteins in cancer is encouraged by experts in the field, but it is still debated due to their antagonist effects. Indeed, a high protein intake could preserve lean body mass but may promote tumour growth, whereas a low-protein diet could reduce tumour size but without addressing cachexia. Here we used a realistic rodent model of cancer and chemotherapy to evaluate the influence of different protein intakes on cachexia, tumour response to chemotherapy and immune system response. The goal is to gain a closer understanding of the effect of protein intake in cancer patients undergoing chemotherapy. METHODS: Female Fischer 344 rats were divided into six groups: five groups (n = 14 per group) with cancer (Ward colon tumour) and chemotherapy were fed with isocaloric diets with 8%, 12%, 16%, 24% or 32% of caloric intake from protein and one healthy control group (n = 8) fed a 16% protein diet, considered as a standard diet. Chemotherapy included two cycles, 1 week apart, each consisting of an injection of CPT-11 (50 mg/kg) followed by 5-fluorouracil (50 mg/kg) the day after. Food intake, body weight, and tumour size were measured daily. On day 9, the rats were euthanized and organs were weighed. Body composition was determined and protein content and protein synthesis (SUnSET method) were measured in the muscle, liver, intestine, and tumour. Immune function was explored by flow cytometry. RESULTS: Cancer and chemotherapy led to a decrease in body weight characterized by a decrease of both fat mass (-56 ± 3%, P < 0.05) and fat-free mass (-8 ± 1%, P < 0.05). Surprisingly, there was no effect of protein diet on body composition, muscle or tumour parameters (weight, protein content, or protein synthesis) but a high cumulative protein intake was positively associated with a high relative body weight and high fat-free mass. The immune system was impacted by cancer and chemotherapy but not by the different amount of protein intake. CONCLUSIONS: Using a realistic model of cancer and chemotherapy, we demonstrated for the first time that protein intake did not positively or negatively modulate tumour growth. Moreover, our results suggested that a high cumulative protein intake was able to improve moderately nutritional status in chemotherapy treated cancer rodents. Although this work cannot be evaluated clinically for ethical reasons, it nevertheless brings an essential contribution to nutrition management for cancer patients.

5.
J Cell Mol Med ; 26(10): 2808-2818, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35460170

RESUMEN

Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age-related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo-excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age-related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L-Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE-19) cells were exposed to hydrogen peroxide (H2 O2 ) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE-19 cells against H2 O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL-8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress.


Asunto(s)
Degeneración Macular , Enfermedades de la Retina , Ácido Ascórbico/farmacología , Supervivencia Celular , Citrulina/metabolismo , Citrulina/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Hierro/metabolismo , Lipofuscina , Degeneración Macular/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de la Retina/patología , Epitelio Pigmentado de la Retina/metabolismo
6.
Nat Metab ; 4(2): 190-202, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165448

RESUMEN

The mechanisms promoting disturbed white adipocyte function in obesity remain largely unclear. Herein, we integrate white adipose tissue (WAT) metabolomic and transcriptomic data from clinical cohorts and find that the WAT phosphocreatine/creatine ratio is increased and creatine kinase-B expression and activity is decreased in the obese state. In human in vitro and murine in vivo models, we demonstrate that decreased phosphocreatine metabolism in white adipocytes alters adenosine monophosphate-activated protein kinase activity via effects on adenosine triphosphate/adenosine diphosphate levels, independently of WAT beigeing. This disturbance promotes a pro-inflammatory profile characterized, in part, by increased chemokine (C-C motif) ligand 2 (CCL2) production. These data suggest that the phosphocreatine/creatine system links cellular energy shuttling with pro-inflammatory responses in human and murine white adipocytes. Our findings provide unexpected perspectives on the mechanisms driving WAT inflammation in obesity and may present avenues to target adipocyte dysfunction.


Asunto(s)
Adipocitos Blancos , Creatina , Adipocitos Blancos/metabolismo , Animales , Humanos , Inflamación/metabolismo , Ratones , Obesidad/metabolismo , Fosfocreatina
7.
Biofactors ; 48(1): 181-189, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34882863

RESUMEN

Intensive care unit patients and chronic airway inflammatory disease are characterized by chronic systemic hypoxia and inflammation inducing a decrease in nitric oxide release due to impaired l-arginine (ARG) homeostasis. As ARG is synthesized from circulating l-citrulline (CIT), an alteration of CIT production in small intestine by ornithine carbamoyltransferase could be involved. Here, we posit that hypoxia and/or inflammation has effects on ornithine carbamoyltransferase regulation in enterocytes. A duodenal explant incubation model was used. Biopsy specimens taken from 25 selected patients were incubated for 6 h in 4 groups: control, inflammation, hypoxia, and hypoxia + inflammation. At the end of the incubation period, we measured CIT concentration in culture media, ornithine carbamoyltransferase activity, ornithine carbamoyltransferase protein and gene expression, protein expression of enzymes involved in the CIT production pathway, and expression of energy status proteins. Inflammation and/or hypoxia conditions did not affect CIT production. Ornithine carbamoyltransferase activity was increased in hypoxia conditions (p = 0.023). Expression of enzymes implicated in the CIT crossroads pathway and enzymes reflecting energy status variation was not affected by inflammation and hypoxia. Data sets were pooled to evaluate the variability of the four quartiles for each parameter. CIT production was found to increase over the quartiles whereas other parameters remained stable. Our results showed that intestinal CIT production is preserved during inflammation and/or hypoxia, thus confirming the significance of this metabolic pathway. This suggests that the CIT deficiency observed in clinical hypercatabolic states could be a consequence of high utilization for ARG synthesis.


Asunto(s)
Citrulina , Enterocitos , Arginina/metabolismo , Arginina/farmacología , Citrulina/metabolismo , Citrulina/farmacología , Enterocitos/metabolismo , Humanos , Hipoxia/genética , Inflamación/genética
8.
Front Physiol ; 12: 748249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658931

RESUMEN

Ornithine transcarbamylase (OTC; EC 2.1.3.3) is a ubiquitous enzyme found in almost all organisms, including vertebrates, microorganisms, and plants. Anabolic, mostly trimeric OTCs catalyze the production of L-citrulline from L-ornithine which is a part of the urea cycle. In eukaryotes, such OTC localizes to the mitochondrial matrix, partially bound to the mitochondrial inner membrane and part of channeling multi-enzyme assemblies. In mammals, mainly two organs express OTC: the liver, where it is an integral part of the urea cycle, and the intestine, where it synthesizes citrulline for export and plays a major role in amino acid homeostasis, particularly of L-glutamine and L-arginine. Here, we give an overview on OTC genes and proteins, their tissue distribution, regulation, and physiological function, emphasizing the importance of OTC and urea cycle enzymes for metabolic regulation in human health and disease. Finally, we summarize the current knowledge of OTC deficiency, a rare X-linked human genetic disorder, and its emerging role in various chronic pathologies.

9.
Adv Sci (Weinh) ; 8(16): e2100106, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34165908

RESUMEN

Obesity and type 2 diabetes are strongly associated with adipose tissue dysfunction and impaired adipogenesis. Understanding the molecular underpinnings that control adipogenesis is thus of fundamental importance for the development of novel therapeutics against metabolic disorders. However, translational approaches are hampered as current models do not accurately recapitulate adipogenesis. Here, a scaffold-free versatile 3D adipocyte culture platform with chemically defined conditions is presented in which primary human preadipocytes accurately recapitulate adipogenesis. Following differentiation, multi-omics profiling and functional tests demonstrate that 3D adipocyte cultures feature mature molecular and cellular phenotypes similar to freshly isolated mature adipocytes. Spheroids exhibit physiologically relevant gene expression signatures with 4704 differentially expressed genes compared to conventional 2D cultures (false discovery rate < 0.05), including the concerted expression of factors shaping the adipogenic niche. Furthermore, lipid profiles of >1000 lipid species closely resemble patterns of the corresponding isogenic mature adipocytes in vivo (R2 = 0.97). Integration of multi-omics signatures with analyses of the activity profiles of 503 transcription factors using global promoter motif inference reveals a complex signaling network, involving YAP, Hedgehog, and TGFß signaling, that links the organotypic microenvironment in 3D culture to the activation and reinforcement of PPARγ and CEBP activity resulting in improved adipogenesis.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo/patología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Humanos , Transducción de Señal/fisiología
10.
Am J Physiol Cell Physiol ; 320(5): C822-C841, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33439778

RESUMEN

Adipocytes are specialized cells with pleiotropic roles in physiology and pathology. Several types of fat cells with distinct metabolic properties coexist in various anatomically defined fat depots in mammals. White, beige, and brown adipocytes differ in their handling of lipids and thermogenic capacity, promoting differences in size and morphology. Moreover, adipocytes release lipids and proteins with paracrine and endocrine functions. The intrinsic properties of adipocytes pose specific challenges in culture. Mature adipocytes float in suspension culture due to high triacylglycerol content and are fragile. Moreover, a fully differentiated state, notably acquirement of the unilocular lipid droplet of white adipocyte, has so far not been reached in two-dimensional culture. Cultures of mouse and human-differentiated preadipocyte cell lines and primary cells have been established to mimic white, beige, and brown adipocytes. Here, we survey various models of differentiated preadipocyte cells and primary mature adipocyte survival describing main characteristics, culture conditions, advantages, and limitations. An important development is the advent of three-dimensional culture, notably of adipose spheroids that recapitulate in vivo adipocyte function and morphology in fat depots. Challenges for the future include isolation and culture of adipose-derived stem cells from different anatomic location in animal models and humans differing in sex, age, fat mass, and pathophysiological conditions. Further understanding of fat cell physiology and dysfunction will be achieved through genetic manipulation, notably CRISPR-mediated gene editing. Capturing adipocyte heterogeneity at the single-cell level within a single fat depot will be key to understanding diversities in cardiometabolic parameters among lean and obese individuals.


Asunto(s)
Adipocitos/fisiología , Tejido Adiposo/fisiología , Adipogénesis , Tejido Adiposo/citología , Animales , Comunicación Celular , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular , Humanos , Fenotipo , Especificidad de la Especie , Esferoides Celulares , Técnicas de Cultivo de Tejidos
11.
Adipocyte ; 9(1): 620-625, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043853

RESUMEN

A chronic low-grade inflammation of white adipose tissue (WAT) is one of the hallmarks of obesity and is proposed to contribute to insulin resistance and type 2 diabetes. Despite this, the causal mechanisms underlying WAT inflammation remain unclear. Based on metabolomic analyses of human WAT, Petrus et al. showed that the amino acid glutamine was the most markedly reduced polar metabolite in the obese state. Reduced glutamine levels in adipocytes induce an increase of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) levels via induction of glycolysis and the hexosamine biosynthetic pathways. This promotes nuclear O-GlcNAcylation, a posttranslational modification that activates the transcription of pro-inflammatory genes. Conversely, glutamine supplementation in vitro and in vivo, reversed these effects. Altogether, dysregulation of intracellular glutamine metabolism in WAT establishes an epigenetic link between adipocytes and inflammation. This commentary discusses these findings and their possibly therapeutic relevance in relation to insulin resistance and type 2 diabetes.


Asunto(s)
Adipocitos/metabolismo , Glutamina/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Susceptibilidad a Enfermedades , Epigénesis Genética , Glucólisis , Humanos , Inmunomodulación , Inflamación/etiología , Inflamación/metabolismo , Resistencia a la Insulina , Metaboloma , Metabolómica/métodos , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...