Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroendocrinol ; 32(8): e12879, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32749037

RESUMEN

Bisphenol A (BPA) is a widely studied and well-recognised endocrine-disrupting chemical, and one of the current issues is its safe replacement by various analogues. Using larva zebrafish as a model, the present study reveals that moderate and chronic exposure to BPA analogues such as bisphenol S, bisphenol F and bisphenol AF may also affect vertebrate neurodevelopment and locomotor activity. Several parameters of embryo-larval development were investigated, such as mortality, hatching, number of mitotically active cell, as defined by 5-bromo-2'-deoxyuridine incorporation and proliferative cell nuclear antigen labelling, aromatase B protein expression in radial glial cell and locomotor activity. Our results show that exposure to several bisphenol analogues induced an acceleration of embryo hatching rate. At the level of the developing brain, a strong up-regulation of the oestrogen-sensitive Aromatase B was also detected in the hypothalamic region. This up-regulation was not associated with effects on the numbers of mitotically active progenitors nor differentiated neurones in the preoptic area and in the nuclear recessus posterior of the hypothalamus zebrafish larvae. Furthermore, using a high-throughput video tracking system to monitor locomotor activity in zebrafish larvae, we show that some bisphenol analogues, such as bisphenol AF, significantly reduced locomotor activity following 6 days of exposure. Taken together, our study provides evidence that BPA analogues can also affect the neurobehavioural development of zebrafish.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Encéfalo/efectos de los fármacos , Fenoles/farmacología , Animales , Animales Modificados Genéticamente , Compuestos de Bencidrilo/química , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Embrión no Mamífero , Desarrollo Embrionario/efectos de los fármacos , Disruptores Endocrinos/farmacología , Larva , Fenoles/química , Sulfonas/farmacología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
2.
Gen Comp Endocrinol ; 288: 113345, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812531

RESUMEN

Natural and synthetic estrogens and progestins are widely used in human and veterinary medicine and are detected in waste and surface waters. Our previous studies have clearly shown that a number of these substances targets the brain to induce the estrogen-regulated brain aromatase expression but the consequences on brain development remain virtually unexplored. The aim of the present study was therefore to investigate the effect of estradiol (E2), progesterone (P4) and norethindrone (NOR), a 19-nortestosterone progestin, on zebrafish larval neurogenesis. We first demonstrated using real-time quantitative PCR that nuclear estrogen and progesterone receptor brain expression is impacted by E2, P4 and NOR. We brought evidence that brain proliferative and apoptotic activities were differentially affected depending on the steroidal hormone studied, the concentration of steroids and the region investigated. Our findings demonstrate for the first time that steroid compounds released in aquatic environment have the capacity to disrupt key cellular events involved in brain development in zebrafish embryos further questioning the short- and long-term consequences of this disruption on the physiology and behavior of organisms.


Asunto(s)
Congéneres del Estradiol/farmacología , Estrógenos/farmacología , Sistema Nervioso/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Congéneres de la Progesterona/farmacología , Progesterona/farmacología , Pez Cebra/embriología , Animales , Embrión no Mamífero , Desarrollo Embrionario/efectos de los fármacos , Disruptores Endocrinos/farmacología , Estradiol/farmacología , Estrógenos/análogos & derivados , Estrógenos/síntesis química , Humanos , Ligandos , Nandrolona/farmacología , Sistema Nervioso/embriología , Células Neuroendocrinas/efectos de los fármacos , Células Neuroendocrinas/fisiología , Noretindrona/farmacología , Progesterona/análogos & derivados , Progesterona/síntesis química , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/agonistas , Receptores de Progesterona/metabolismo , Pez Cebra/crecimiento & desarrollo
3.
J Comp Neurol ; 526(4): 569-582, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29124763

RESUMEN

The reparative ability of the central nervous system varies widely in the animal kingdom. In the mammalian brain, the regenerative mechanisms are very limited and newly formed neurons do not survive longer, probably due to a non-suitable local environment. On the opposite, fish can repair the brain after injury, with fast and complete recovery of damaged area. The brain of zebrafish, a teleost fish widely used as vertebrate model, also possesses high regenerative properties after injury. Taking advantage of this relevant model, the aim of the present study was to investigate the role of brain-derived neurotrophic factor (BDNF) in the regenerative ability of adult brain, after stab wound telencephalic injury. BDNF is involved in many brain functions and plays key roles in the repair process after traumatic brain lesions. It has been reported that BDNF strengthens the proliferative activity of neuronal precursor cells, facilitates the neuronal migration toward injured areas, and shows survival properties due to its anti-apoptotic effects. BDNF mRNA levels, assessed by quantitative PCR and in situ hybridization at 1, 4, 7, and 15 days after the lesion, were increased in the damaged telencephalon, mostly suddenly after the lesion. Double staining using in situ hybridization and immunocytochemistry revealed that BDNF mRNA was restricted to cells identified as mature neurons. BDNF mRNA expressing neurons mostly increased in the area around the lesion, showing a peak 1 day after the lesion. Taken together, these results highlight the role of BDNF in brain repair processes and reinforce the value of zebrafish for the study of regenerative neurogenesis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Telencéfalo/lesiones , Telencéfalo/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Modelos Animales de Enfermedad , Lateralidad Funcional , Masculino , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Neuronas/patología , ARN Mensajero/metabolismo , Telencéfalo/patología , Heridas Punzantes/metabolismo , Heridas Punzantes/patología , Pez Cebra
4.
J Comp Neurol ; 525(3): 478-497, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27414756

RESUMEN

The epigenetic mark 5-hydroxymethylcytosine (5hmC) is a cytosine modification that is abundant in the central nervous system of mammals and which results from 5-methylcytosine oxidation by TET enzymes. Such a mark is suggested to play key roles in the regulation of chromatin structure and gene expression. However, its precise functions still remain poorly understood and information about its distribution in non-mammalian species is still lacking. Here, the distribution of 5hmC was investigated in the brain of adult zebrafish, African claw frog, and mouse in a comparative manner. We show that zebrafish neurons are endowed with high levels of 5hmC, whereas quiescent or proliferative neural progenitors show low to undetectable levels of the modified cytosine. In the brain of larval and juvenile Xenopus, 5hmC is also detected in neurons, while ventricular proliferative cells do not display this epigenetic mark. Similarly, 5hmC is enriched in neurons compared to neural progenitors of the ventricular zone in the mouse developing cortex. Interestingly, 5hmC colocalized with the methylated DNA binding protein MeCP2 and with the active chromatin histone modification H3K4me2 in mouse neurons. Taken together, our results show an evolutionarily conserved cerebral distribution of 5hmC between fish and tetrapods and reinforce the idea that 5hmC fulfills major functions in the control of chromatin activity in vertebrate neurons. J. Comp. Neurol. 525:478-497, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
5-Metilcitosina/análogos & derivados , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Neuronas/metabolismo , 5-Metilcitosina/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Dermoscopía , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Microscopía Confocal , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Mucosa Olfatoria/citología , Mucosa Olfatoria/crecimiento & desarrollo , Mucosa Olfatoria/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Xenopus , Pez Cebra
5.
PLoS One ; 11(6): e0158057, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27336917

RESUMEN

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Encéfalo/metabolismo , Expresión Génica , Pez Cebra/genética , Animales , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proliferación Celular , Inmunohistoquímica , Hibridación in Situ , Larva , Neuroglía/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Front Neurosci ; 10: 112, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047331

RESUMEN

Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model.

7.
Gen Comp Endocrinol ; 221: 203-12, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26255686

RESUMEN

The last step of oestrogen biosynthesis is catalyzed by the enzyme aromatase, the product of the cyp19a1 gene. In vertebrates, cyp19a1 is expressed in the brain resulting in a local oestrogen production that seems important not only for the control of reproduction-related circuits and sexual behaviour, but also for the regulation of neural development, synaptic plasticity and cell survival. In adult amphibians, the precise sites of expression of cyp19a1 in the brain have not been investigated which prevents proper understanding of its potential physiological functions. The present study aimed at examining the precise neuroanatomical distribution of cyp19a1 transcripts in adult brains of both male and female Xenopus. We found that cyp19a1 expression is highly regionalized in the brains of both sexes. The highest expression was found in the anterior part of the preoptic area and in the caudal hypothalamus, but significant levels of cyp19a1 transcripts were also found in the supraoptic paraventricular and suprachiasmatic areas, and in brain regions corresponding to the septum, bed nucleus of the stria terminalis and amygdala. Importantly, no obvious difference between male and female Xenopus was detected at the level of cyp19a1 transcripts. Additionally, in the brain of adult Xenopus, cyp19a1 transcripts were detected in neurons, and not in glial cells. These data and those available in other vertebrates on cyp19a1/aromatase expression suggest that, with the intriguing exception of teleost fishes, cyp19a1 was under strong evolutionary conservation with respect to its sites of expression and the nature of the cells in which it is expressed.


Asunto(s)
Aromatasa/metabolismo , Encéfalo/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/enzimología , Conducta Sexual , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo , Animales , Aromatasa/genética , Femenino , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Masculino , Neuronas/citología , Factores Sexuales , Xenopus laevis/crecimiento & desarrollo
8.
J Struct Biol ; 190(1): 1-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25770062

RESUMEN

Second harmonic generation (SHG) microscopy is a powerful tool for studying submicron architecture of muscles tissues. Using this technique, we show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of premetamorphic xenopus tadpole tail muscles is converted to double frequency (2f) sarcomeric SHG-IP in metamorphic climax stages due to massive physiological muscle proteolysis. This conversion was found to rise from 7% in premetamorphic muscles to about 97% in fragmented muscular apoptotic bodies. Moreover a 66% conversion was also found in non-fragmented metamorphic tail muscles. Also, a strong correlation between predominant 2f sarcomeric SHG-IPs and myofibrillar misalignment is established with electron microscopy. Experimental and theoretical results demonstrate the higher sensitivity and the supra resolution power of SHG microscopy over TPEF to reveal 3D myofibrillar misalignment. From this study, we suggest that 2f sarcomeric SHG-IP could be used as signature of triad defect and disruption of excitation-contraction coupling. As the mechanism of muscle proteolysis is similar to that found in mdx mouse muscles, we further suggest that xenopus tadpole tail resorption at climax stages could be used as an alternative or complementary model of Duchene muscular dystrophy.


Asunto(s)
Músculo Esquelético/ultraestructura , Xenopus laevis/anatomía & histología , Animales , Larva/crecimiento & desarrollo , Larva/ultraestructura , Músculo Esquelético/crecimiento & desarrollo , Cola (estructura animal)/crecimiento & desarrollo , Cola (estructura animal)/ultraestructura , Proteínas de Xenopus/ultraestructura , Xenopus laevis/crecimiento & desarrollo
9.
Biochim Biophys Acta ; 1849(2): 152-62, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25038582

RESUMEN

Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Asunto(s)
Anfibios/embriología , Aromatasa/fisiología , Encéfalo/embriología , Peces/embriología , Receptores de Estrógenos/fisiología , Anfibios/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Embrión no Mamífero , Disruptores Endocrinos/farmacología , Peces/genética , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuroglía/fisiología , Pez Cebra/embriología , Pez Cebra/genética
10.
Biomed Opt Express ; 5(3): 858-75, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24688819

RESUMEN

We show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of control muscles is converted to double frequency sarcomeric SHG-IP in preserved mdx mouse gastrocnemius muscles in the vicinity of necrotic fibers. These double frequency sarcomeric SHG-IPs are often spatially correlated to double frequency sarcomeric two-photon excitation fluorescence (TPEF) emitted from Z-line and I-bands and to one centered spot SHG angular intensity pattern (SHG-AIP) suggesting that these patterns are signature of myofibrillar misalignement. This latter is confirmed with transmission electron microscopy (TEM). Moreover, a good spatial correlation between SHG signature of myofibrillar misalignment and triad reduction is established. Theoretical simulation of sarcomeric SHG-IP is used to demonstrate the correlation between change of SHG-IP and -AIP and myofibrillar misalignment. The extreme sensitivity of SHG microscopy to reveal the submicrometric organization of A-band thick filaments is highlighted. This report is a first step toward future studies aimed at establishing live SHG signature of myofibrillar misalignment involving excitation contraction defects due to muscle damage and disease.

11.
PLoS One ; 8(6): e66487, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23799108

RESUMEN

In contrast to mammals that have limited proliferation and neurogenesis capacities, the Xenopus frog exhibit a great potential regarding proliferation and production of new cells in the adult brain. This ability makes Xenopus a useful model for understanding the molecular programs required for adult neurogenesis. Transcriptional factors that control adult neurogenesis in vertebrate species undergoing widespread neurogenesis are unknown. NeuroD1 is a member of the family of proneural genes, which function during embryonic neurogenesis as a potent neuronal differentiation factor. Here, we study in detail the expression of NeuroD1 gene in the juvenile and adult Xenopus brains by in situ hybridization combined with immunodetections for proliferation markers (PCNA, BrdU) or in situ hybridizations for cell type markers (Vimentin, Sox2). We found NeuroD1 gene activity in many brain regions, including olfactory bulbs, pallial regions of cerebral hemispheres, preoptic area, habenula, hypothalamus, cerebellum and medulla oblongata. We also demonstrated by double staining NeuroD1/BrdU experiments, after long post-BrdU administration survival times, that NeuroD1 gene activity was turned on in new born neurons during post-metamorphic neurogenesis. Importantly, we provided evidence that NeuroD1-expressing cells at this brain developmental stage were post-mitotic (PCNA-) cells and not radial glial (Vimentin+) or progenitors (Sox2+) cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Ependimogliales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Xenopus laevis/fisiología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Diencéfalo/citología , Diencéfalo/metabolismo , Femenino , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Masculino , Metamorfosis Biológica , Mitosis , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos , Factores de Transcripción SOXB1/metabolismo , Telencéfalo/citología , Telencéfalo/metabolismo , Regulación hacia Arriba , Vimentina/metabolismo , Proteínas de Xenopus/metabolismo
12.
Development ; 139(11): 1910-20, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22513369

RESUMEN

The basic helix-loop-helix transcription factor MyoD is a central actor that triggers the skeletal myogenic program. Cell-autonomous and non-cell-autonomous regulatory pathways must tightly control MyoD expression to ensure correct initiation of the muscle program at different places in the embryo and at different developmental times. In the present study, we have addressed the involvement of Sim2 (single-minded 2) in limb embryonic myogenesis. Sim2 is a bHLH-PAS transcription factor that inhibits transcription by active repression and displays enhanced expression in ventral limb muscle masses during chick and mouse embryonic myogenesis. We have demonstrated that Sim2 is expressed in muscle progenitors that have not entered the myogenic program, in different experimental conditions. MyoD expression is transiently upregulated in limb muscle masses of Sim2(-/-) mice. Conversely, Sim2 gain-of-function experiments in chick and Xenopus embryos showed that Sim2 represses MyoD expression. In addition, we show that Sim2 represses the activity of the mouse MyoD promoter in primary myoblasts and is recruited to the MyoD core enhancer in embryonic mouse limbs. Sim2 expression is non-autonomously and negatively regulated by the dorsalising factor Lmx1b. We propose that Sim2 represses MyoD transcription in limb muscle masses, through Sim2 recruitment to the MyoD core enhancer, in order to prevent premature entry into the myogenic program. This MyoD repression is predominant in ventral limb regions and is likely to contribute to the differential increase of the global mass of ventral muscles versus dorsal muscles.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Desarrollo de Músculos/fisiología , Proteína MioD/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Embrión de Pollo , Inmunoprecipitación de Cromatina , Electroporación , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Tubo Neural/embriología , Tubo Neural/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Somitos/embriología , Somitos/metabolismo , Células Madre/metabolismo , Xenopus
13.
Brain Res ; 1405: 31-48, 2011 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-21742311

RESUMEN

In contrast to mammals, the brain of adult non-mammalian vertebrates exhibits a higher proliferative and/or neurogenic activity. To provide new models on this issue, we have examined origin, distribution and fate of proliferating cells in the entire brain of juvenile and adult Xenopus laevis. Using immunohistochemistry for the Proliferation Cell Nuclear Antigen (PCNA), and/or the thymidine analog, 5-Bromo-2' deoxyUridine (BrdU), the labeled cells are located in ventricular zones of the olfactory bulbs, cerebral hemispheres, preoptic region, ventral hypothalamus and cerebellum. Qualitatively, the highest level of proliferative cells was found in the telencephalic ventricles. By using in situ hybridization/immunocytochemistry double-labeling techniques, we demonstrate for the first time in post-metamorphic frog brain that the proliferative cells are localized in very close vivinity to the radial glial cells, progenitor cells that we have also identified in the ventricular layer using classical molecular markers (BLBP, Vimentin). In addition, after long post-BrdU administration survival times ranging between 14 and 28days, BrdU labeling combined with immunohistochemistry for markers of cell migration (DoubleCortin) or radial glial cells (BLBP), reveals that the proliferative cells are able to migrate from the ventricular zone into the brain parenchyma, most likely by migrating along the radial processes. Finally, at survival time of 28days and by using a combination of BrdU labeling and in situ hybridization for markers of differentiation states (Neuro-ß-tubulin, Proteolipid Protein), we demonstrate that newborn cells can differentiate in large portion into either neurons or oligodendrocytes.


Asunto(s)
Envejecimiento , Encéfalo/citología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células-Madre Neurales/citología , Animales , Inmunohistoquímica , Hibridación in Situ , Neuroglía/citología , Neuronas/citología , Xenopus laevis
14.
Transgenic Res ; 18(5): 815-27, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19404763

RESUMEN

Combining two existing protocols of trangenesis, namely the REMI and the I-SceI meganuclease methods, we generated Xenopus leavis expressing a transgene under the control of a promoter that presented a restricted pattern of activity and a low level of expression. This was realized by co-incubating sperm nuclei, the I-SceI enzyme and the transgene prior to transplantation into unfertilized eggs. The addition of the woodchuck hepatitis virus posttranscriptional regulatory element in our constructs further enhanced the expression of the transgene without affecting the tissue-specificity of the promoter activity. Using this combination of methods we produced high rates of fully transgenic animals that stably transmitted the transgene to the next generations with a transmission rate of 50% indicating a single integration event.


Asunto(s)
Transgenes , Xenopus laevis/genética , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Virus de la Hepatitis B de la Marmota/genética , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas
15.
Int J Dev Biol ; 53(1): 149-57, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19123137

RESUMEN

The Drosophila Single minded (Sim) transcription factor is a master regulator of cell fate during midline development. The homolog mouse Sim1 and Sim2 genes are important for central nervous system development. Loss of mSim1 activity leads to an absence of specific neuroendocrine lineages within the hypothalamus, while overexpression of mSim2 leads to behavioural defects. We now provide evidence that vertebrate Sim genes might be important for limb muscle formation. We have examined by in situ hybridisation the expression of the Sim1 and Sim2 genes during limb development in chick and mouse embryos. The expression of both Sim genes is mainly associated with limb muscle formation. We found that each Sim gene has a similar temporal and spatial expression pattern in chick and mouse embryonic limbs, although with some differences for the Sim2 gene between species. In chick or mouse embryonic limbs, Sim1 and Sim2 display non-overlapping expression domains, suggesting an involvement for Sim1 and Sim2 proteins at different steps of limb muscle formation. Sim1 gene expression is associated with the early step of muscle progenitor cell migration in chick and mouse, while the Sim2 gene is expressed just after the migration process. In addition, chick and mouse Sim2 gene expression is enhanced in limb ventral muscle masses versus dorsal ventral muscle masses. Our results provide a basis for further functional analysis of the Sim genes in limb muscle formation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Embrión de Pollo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Represoras/química , Proteínas Represoras/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
16.
Development ; 134(14): 2579-91, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17553906

RESUMEN

Muscle formation and vascular assembly during embryonic development are usually considered separately. In this paper, we investigate the relationship between the vasculature and muscles during limb bud development. We show that endothelial cells are detected in limb regions before muscle cells and can organize themselves in space in the absence of muscles. In chick limbs, endothelial cells are detected in the future zones of muscle cleavage, delineating the cleavage pattern of muscle masses. We therefore perturbed vascular assembly in chick limbs by overexpressing VEGFA and demonstrated that ectopic blood vessels inhibit muscle formation, while promoting connective tissue. Conversely, local inhibition of vessel formation using a soluble form of VEGFR1 leads to muscle fusion. The endogenous location of endothelial cells in the future muscle cleavage zones and the inverse correlation between blood vessels and muscle suggests that vessels are involved in the muscle splitting process. We also identify the secreted factor PDGFB (expressed in endothelial cells) as a putative molecular candidate mediating the muscle-inhibiting and connective tissue-promoting functions of blood vessels. Finally, we propose that PDGFB promotes the production of extracellular matrix and attracts connective tissue cells to the future splitting site, allowing separation of the muscle masses during the splitting process.


Asunto(s)
Vasos Sanguíneos/embriología , Tipificación del Cuerpo , Endotelio Vascular/embriología , Extremidades/embriología , Músculo Esquelético/embriología , Proteínas Proto-Oncogénicas c-sis/fisiología , Animales , Embrión de Pollo , Tejido Conectivo/embriología , Células Endoteliales/fisiología , Matriz Extracelular/fisiología , Extremidades/irrigación sanguínea , Extremidades/fisiología , Morfogénesis , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Proteína MioD/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
J Cell Biochem ; 102(6): 1542-52, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17471499

RESUMEN

We report the molecular cloning and the characterization of the Xenopus homolog of mammalian hypoxia-inducible factor 1alpha (HIF1alpha), a member of the bHLH/PAS transcription factor family. Searches in Xenopus genome sequences and phylogenetic analysis reveal the existence of HIF1alpha and HIF2alpha paralogs in the Xenopus laevis species. Sequence data analyses indicate that the organization of protein domains in Xenopus HIF1alpha (xHIF1alpha) is strongly conserved. We also show that xHIF1alpha heterodimerizes with the Xenopus Arnt1 protein (xArnt1) with the proteic complex being mediated by the HLH and PAS domains. Subcellular analysis in a Xenopus XTC cell line using chimeric GFP constructs show that over-expression of xHIF1alpha and xArnt1 allows us to detect the xHIF1alpha/xArnt1 complex in the nucleus, but only in the presence of both partners. Further analyses in XTC cell line show that over-producing xHIF1alpha and xArnt1 mediates trans-activation of the hypoxia response element (HRE) reporter. The trans-activation level can be increased in hypoxia conditions. Interestingly such trans-activation properties can be also observed when human Arnt1 is used together with the xHIF1alpha.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas de Xenopus/genética , Xenopus/genética , Secuencia de Aminoácidos , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Clonación Molecular , Secuencia Conservada , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , Plásmidos , Unión Proteica , Estructura Terciaria de Proteína , Elementos de Respuesta , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Activación Transcripcional , Proteínas de Xenopus/metabolismo
18.
Dev Dyn ; 233(2): 652-8, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15844192

RESUMEN

Loss-of-function experiments in mice have shown that the transcription factors Sim1, Otp, Sim2, and Brn2 form a cascade essential for the differentiation of neuroendocrine cells of the anterior hypothalamus that produce vasopressin, oxytocin, somatostatin (SS), thyrotropin-releasing hormone (TRH), and corticotropin-releasing hormone (CRH). Very little is known about how the differentiation of these cell types is regulated in chick. Here, we report the cloning of the chick homolog of Otp. Moreover, we have systematically compared the expression of Sim1, Sim2, Brn2, and Otp with that of the markers of terminal differentiation TRH, SS, CRH, vasotocin, and mesotocin during development of chick embryos. We have found that the cell types studied generally develop in domains expressing these transcriptional regulators but that the pattern of neuronal differentiation and the spatial distribution of some regulators were not the same as in mice. Our results provide a framework useful for the functional analysis of hypothalamus development in chick.


Asunto(s)
Hipotálamo Anterior/citología , Hipotálamo Anterior/embriología , Animales , Biomarcadores , Diferenciación Celular , Núcleo Celular/genética , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Hipotálamo Anterior/metabolismo , Hibridación in Situ , Proteínas del Tejido Nervioso/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Proteínas Represoras/genética , Factores de Transcripción/genética
19.
Exp Cell Res ; 287(2): 237-48, 2003 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12837280

RESUMEN

Transcription factors belonging to the basic helix-loop-helix Per-Arnt-Sim (bHLH/PAS) family control a wide variety of biological processes in mammalian and/or Drosophila. We have previously isolated bHLH/PAS Xenopus amphibian homologs of Single-minded (xSim) and aryl receptor nuclear translocator (xArnt) and characterized their expression pattern during embryogenesis. We show in this paper that xSim protein is a functional homolog of Drosophila or mammalian Sim(s). Biochemical analysis indicates that xSim forms a heterodimer with xArnt. Subcellular localization analysis of bHLH/PAS chimeric fluorescent versions in Xenopus or mammalian cell lines shows that xSim is constitutively localized in the nuclear compartment. On the opposite, xArnt appears to be predominantly expressed in the cytoplasm. In addition, we demonstrate that xArnt nuclear localization depends on the presence of xSim. Thus xSim appears to be an essential factor in the nuclear translocation of the xSim/xArnt complex. In perfect agreement, we show that the C-terminal half of xSim contains the information for this nuclear localization.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN , Proteínas de Drosophila , Secuencias Hélice-Asa-Hélice/genética , Receptores de Hidrocarburo de Aril , Factores de Transcripción/metabolismo , Proteínas de Xenopus , Xenopus/embriología , Secuencia de Aminoácidos , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células COS , Proteínas Portadoras/metabolismo , Células Cultivadas , Chlorocebus aethiops , Citoplasma/metabolismo , Dimerización , Drosophila/genética , Proteínas Fluorescentes Verdes , Proteínas de Insectos/metabolismo , Proteínas Luminiscentes/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
20.
Dev Genes Evol ; 206(6): 397-406, 1997 01.
Artículo en Inglés | MEDLINE | ID: mdl-27747401

RESUMEN

Expression and distribution of a constitutive member of the 90 kDa heat-shock protein family, named HSC90, was investigated during amphibian embryonic development. By Northern blot analysis, two hsp90 transcripts (2.5 and 3 kb) which displayed differing developmental regulation were detected during embryogenesis. Expression of the larger transcript (3 kb), which encodes an HSC90-related protein, decreased until the gastrula stage. However, zygotic transcription for this hsc90 gene was found to start from the neurula stage, and the corresponding zygotic hsc90 transcript was specifically located by whole mount in situ hybridization in the anterior neural tube of a late neurula embryo. Later, in a tailbud embryo, hsc90 transcripts were detected in the cephalic region, neural tube, eye vesicles, branchial and mandibular arches and somites. Distribution of the HSC90-related protein was also analysed by immunohistochemistry throughout embryogenesis. As expected, the protein was strongly expressed in the cytoplasm, mainly in the periplasmic area of embryonic tissue cells. Interestingly, HSC90 was also transiently detected in the nuclear area, with this nuclear transfer depending on the chromatin condensation state, up to the blastula stage. During the process of gastrulation, nuclear translocation of HSC90 was also observed at the level of the blastopore dorsal lip, exclusively in cells undergoing invagination.


Asunto(s)
Proteínas Anfibias/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Salamandridae/embriología , Transporte Activo de Núcleo Celular , Proteínas Anfibias/metabolismo , Animales , Desarrollo Embrionario , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Masculino , Especificidad de Órganos , Salamandridae/genética , Salamandridae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA