Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1352757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455730

RESUMEN

The timing of floral budbreak in apple has a significant effect on fruit production and quality. Budbreak occurs as a result of a complex molecular mechanism that relies on accurate integration of external environmental cues, principally temperature. In the pursuit of understanding this mechanism, especially with respect to aiding adaptation to climate change, a QTL at the top of linkage group (LG) 9 has been identified by many studies on budbreak, but the genes underlying it remain elusive. Here, together with a dessert apple core collection of 239 cultivars, we used a targeted capture sequencing approach to increase SNP resolution in apple orthologues of known or suspected A. thaliana flowering time-related genes, as well as approximately 200 genes within the LG9 QTL interval. This increased the 275 223 SNP Axiom® Apple 480 K array dataset by an additional 40 857 markers. Robust GWAS analyses identified MdPRX10, a peroxidase superfamily gene, as a strong candidate that demonstrated a dormancy-related expression pattern and down-regulation in response to chilling. In-silico analyses also predicted the residue change resulting from the SNP allele associated with late budbreak could alter protein conformation and likely function. Late budbreak cultivars homozygous for this SNP allele also showed significantly up-regulated expression of C-REPEAT BINDING FACTOR (CBF) genes, which are involved in cold tolerance and perception, compared to reference cultivars, such as Gala. Taken together, these results indicate a role for MdPRX10 in budbreak, potentially via redox-mediated signaling and CBF gene regulation. Moving forward, this provides a focus for developing our understanding of the effects of temperature on flowering time and how redox processes may influence integration of external cues in dormancy pathways.

3.
New Phytol ; 235(5): 1796-1806, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35637611

RESUMEN

Growth at increased concentrations of CO2 induces a reduction in seed zinc (Zn) and iron (Fe). Using Arabidopsis thaliana, we investigated whether this could be mitigated by reducing the elevated CO2 -induced decrease in transpiration. We used an infrared imaging-based screen to isolate mutants in At1g08080 that encodes ALPHA CARBONIC ANHYDRASE 7 (ACA7). aca7 mutant alleles display wild-type (WT) responses to abscisic acid (ABA) and light but are compromised in their response to elevated CO2 . ACA7 is expressed in guard cells. When aca7 mutants are grown at 1000 ppm CO2 they exhibit higher transpiration and higher seed Fe and Zn content than WT grown under the same conditions. Our data show that by increasing transpiration it is possible to partially mitigate the reduction in seed Fe and Zn content when Arabidopsis is grown at elevated CO2 .


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Dióxido de Carbono/farmacología , Mutación/genética , Estomas de Plantas/fisiología , Semillas , Zinc
4.
New Phytol ; 234(1): 209-226, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35023155

RESUMEN

Tree architecture shows large genotypic variability, but how this affects water-deficit responses is poorly understood. To assess the possibility of reaching ideotypes with adequate combinations of architectural and functional traits in the face of climate change, we combined high-throughput field phenotyping and genome-wide association studies (GWAS) on an apple tree (Malus domestica) core-collection. We used terrestrial light detection and ranging (T-LiDAR) scanning and airborne multispectral and thermal imagery to monitor tree architecture, canopy shape, light interception, vegetation indices and transpiration on 241 apple cultivars submitted to progressive field soil drying. GWAS was performed with single nucleotide polymorphism (SNP)-by-SNP and multi-SNP methods. Large phenotypic and genetic variability was observed for all traits examined within the collection, especially canopy surface temperature in both well-watered and water deficit conditions, suggesting control of water loss was largely genotype-dependent. Robust genomic associations revealed independent genetic control for the architectural and functional traits. Screening associated genomic regions revealed candidate genes involved in relevant pathways for each trait. We show that multiple allelic combinations exist for all studied traits within this collection. This opens promising avenues to jointly optimize tree architecture, light interception and water use in breeding strategies. Genotypes carrying favourable alleles depending on environmental scenarios and production objectives could thus be targeted.


Asunto(s)
Malus , Estudio de Asociación del Genoma Completo , Genómica , Malus/genética , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Árboles/genética , Agua
5.
G3 (Bethesda) ; 11(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34544146

RESUMEN

Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.


Asunto(s)
Sequías , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Genómica , Fenotipo
6.
PLoS Genet ; 16(7): e1008882, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32673315

RESUMEN

Expansion of the maize growing area was central for food security in temperate regions. In addition to the suppression of the short-day requirement for floral induction, it required breeding for a large range of flowering time that compensates the effect of South-North gradients of temperatures. Here we show the role of a novel florigen gene, ZCN12, in the latter adaptation in cooperation with ZCN8. Strong eQTLs of ZCN8 and ZCN12, measured in 327 maize lines, accounted for most of the genetic variance of flowering time in platform and field experiments. ZCN12 had a strong effect on flowering time of transgenic Arabidopsis thaliana plants; a path analysis showed that it directly affected maize flowering time together with ZCN8. The allelic composition at ZCN QTLs showed clear signs of selection by breeders. This suggests that florigens played a central role in ensuring a large range of flowering time, necessary for adaptation to temperate areas.


Asunto(s)
Adaptación Fisiológica/genética , Florigena/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Aclimatación/genética , Frío , Flores/genética , Flores/crecimiento & desarrollo , Humanos , Fotoperiodo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Zea mays/crecimiento & desarrollo
7.
Plant Physiol ; 182(3): 1404-1419, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31949030

RESUMEN

High temperature promotes guard cell expansion, which opens stomatal pores to facilitate leaf cooling. How the high-temperature signal is perceived and transmitted to regulate stomatal aperture is, however, unknown. Here, we used a reverse-genetics approach to understand high temperature-mediated stomatal opening in Arabidopsis (Arabidopsis thaliana). Our findings reveal that high temperature-induced guard cell movement requires components involved in blue light-mediated stomatal opening, suggesting cross talk between light and temperature signaling pathways. The molecular players involved include phototropin photoreceptors, plasma membrane H+-ATPases, and multiple members of the 14-3-3 protein family. We further show that phototropin-deficient mutants display impaired rosette evapotranspiration and leaf cooling at high temperatures. Blocking the interaction of 14-3-3 proteins with their client proteins severely impairs high temperature-induced stomatal opening but has no effect on the induction of heat-sensitive guard cell transcripts, supporting the existence of an additional intracellular high-temperature response pathway in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Temperatura
8.
Curr Biol ; 29(15): 2580-2585.e4, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31353185

RESUMEN

Although UVA radiation (315-400 nm) represents 95% of the UV radiation reaching the earth's surface, surprisingly little is known about its effects on plants [1]. We show that in Arabidopsis, short-term exposure to UVA inhibits the opening of stomata, and this requires a reduction in the cytosolic level of cGMP. This process is independent of UVR8, the UVB receptor. A cGMP-activated phosphodiesterase (AtCN-PDE1) was responsible for the UVA-induced decrease in cGMP in Arabidopsis. AtCN-PDE1-like proteins form a clade within the large HD-domain/PDEase-like protein superfamily, but no eukaryotic members of this subfamily have been functionally characterized. These genes have been lost from the genomes of metazoans but are otherwise conserved as single-copy genes across the tree of life. In longer-term experiments, UVA radiation increased growth and decreased water-use efficiency. These experiments revealed that PDE1 is also a negative regulator of growth. As the PDE1 gene is ancient and not represented in animal lineages, it is likely that at least one element of cGMP signaling in plants has evolved differently to the system present in metazoans.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/efectos de la radiación , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Transducción de Señal
9.
Nat Genet ; 51(6): 952-956, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110353

RESUMEN

The development of germplasm adapted to changing climate is required to ensure food security1,2. Genomic prediction is a powerful tool to evaluate many genotypes but performs poorly in contrasting environmental scenarios3-7 (genotype × environment interaction), in spite of promising results for flowering time8. New avenues are opened by the development of sensor networks for environmental characterization in thousands of fields9,10. We present a new strategy for germplasm evaluation under genotype × environment interaction. Yield was dissected in grain weight and number and genotype × environment interaction in these components was modeled as genotypic sensitivity to environmental drivers. Environments were characterized using genotype-specific indices computed from sensor data in each field and the progression of phenology calibrated for each genotype on a phenotyping platform. A whole-genome regression approach for the genotypic sensitivities led to accurate prediction of yield under genotype × environment interaction in a wide range of environmental scenarios, outperforming a benchmark approach.


Asunto(s)
Agricultura , Ambiente , Genoma de Planta , Genómica , Fenotipo , Zea mays/genética , Grano Comestible , Europa (Continente) , Interacción Gen-Ambiente , Estudios de Asociación Genética , Genómica/métodos , Geografía
10.
Hortic Res ; 6: 52, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044079

RESUMEN

Despite previous reports on the genotypic variation of architectural and functional traits in fruit trees, phenotyping large populations in the field remains challenging. In this study, we used high-throughput phenotyping methods on an apple tree core-collection (1000 individuals) grown under contrasted watering regimes. First, architectural phenotyping was achieved using T-LiDAR scans for estimating convex and alpha hull volumes and the silhouette to total leaf area ratio (STAR). Second, a semi-empirical index (I PL) was computed from chlorophyll fluorescence measurements, as a proxy for leaf photosynthesis. Last, thermal infrared and multispectral airborne imaging was used for computing canopy temperature variations, water deficit, and vegetation indices. All traits estimated by these methods were compared to low-throughput in planta measurements. Vegetation indices and alpha hull volumes were significantly correlated with tree leaf area and trunk cross sectional area, while I PL values showed strong correlations with photosynthesis measurements collected on an independent leaf dataset. By contrast, correlations between stomatal conductance and canopy temperature estimated from airborne images were lower, emphasizing discrepancies across measurement scales. High heritability values were obtained for almost all the traits except leaf photosynthesis, likely due to large intra-tree variation. Genotypic means were used in a clustering procedure that defined six classes of architectural and functional combinations. Differences between groups showed several combinations between architectural and functional traits, suggesting independent genetic controls. This study demonstrates the feasibility and relevance of combining multi-scale high-throughput methods and paves the way to explore the genetic bases of architectural and functional variations in woody crops in field conditions.

11.
J Exp Bot ; 70(9): 2523-2534, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30137451

RESUMEN

Multi-genotype canopies are frequent in phenotyping experiments and are of increasing interest in agriculture. Radiation interception efficiency (RIE) and radiation use efficiency (RUE) have low heritabilities in such canopies. We propose a revised Monteith equation that identifies environmental and genetic components of RIE and RUE. An environmental term, a component of RIE, characterizes the effect of the presence or absence of neighbours on light interception. The ability of a given plant to compete with its neighbours is then identified, which accounts for the genetic variability of RIE of plants having similar leaf areas. This method was used in three experiments in a phenotyping platform with 765 plants of 255 maize hybrids. As expected, the heritability of the environmental term was near zero, whereas that of the competitiveness term increased with phenological stage, resulting in the identification of quantitative trait loci. In the same way, RUE was dissected as an effect of intercepted light and a genetic term. This approach was used for predicting the behaviour of individual genotypes in virtual multi-genotype canopies. A large effect of competitiveness was observed in multi-genotype but not in single-genotype canopies, resulting in a bias for genotype comparisons in breeding fields.


Asunto(s)
Zea mays/metabolismo , Biomasa , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Zea mays/genética , Zea mays/fisiología
12.
Plant Cell Environ ; 41(2): 314-326, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29044609

RESUMEN

Stomatal conductance is central for the trades-off between hydraulics and photosynthesis. We aimed at deciphering its genetic control and that of its responses to evaporative demand and water deficit, a nearly impossible task with gas exchanges measurements. Whole-plant stomatal conductance was estimated via inversion of the Penman-Monteith equation from data of transpiration and plant architecture collected in a phenotyping platform. We have analysed jointly 4 experiments with contrasting environmental conditions imposed to a panel of 254 maize hybrids. Estimated whole-plant stomatal conductance closely correlated with gas-exchange measurements and biomass accumulation rate. Sixteen robust quantitative trait loci (QTLs) were identified by genome wide association studies and co-located with QTLs of transpiration and biomass. Light, vapour pressure deficit, or soil water potential largely accounted for the differences in allelic effects between experiments, thereby providing strong hypotheses for mechanisms of stomatal control and a way to select relevant candidate genes among the 1-19 genes harboured by QTLs. The combination of allelic effects, as affected by environmental conditions, accounted for the variability of stomatal conductance across a range of hybrids and environmental conditions. This approach may therefore contribute to genetic analysis and prediction of stomatal control in diverse environments.


Asunto(s)
Genes de Plantas/genética , Estomas de Plantas/genética , Transpiración de Plantas/genética , Zea mays/genética , Biomasa , Deshidratación , Genes de Plantas/fisiología , Estudios de Asociación Genética , Variación Genética , Estudio de Asociación del Genoma Completo , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Sitios de Carácter Cuantitativo/genética , Zea mays/fisiología
13.
Plant Physiol ; 175(3): 1121-1134, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28899961

RESUMEN

Plants evolved different strategies to cope with water stress. While isohydric species maintain their midday leaf water potential (ΨM) under soil water deficit by closing their stomata, anisohydric species maintain higher stomatal aperture and exhibit substantial reductions in ΨM It was hypothesized that isohydry is related to a locally higher sensitivity of stomata to the drought-hormone abscisic acid (ABA). Interestingly, recent lines of evidence in Arabidopsis (Arabidopsis thaliana) suggested that stomatal responsiveness is also controlled by an ABA action on leaf water supply upstream from stomata. Here, we tested the possibility in grapevine (Vitis vinifera) that different genotypes ranging from near isohydric to more anisohydric may have different sensitivities in these ABA responses. Measurements on whole plants in drought conditions were combined with assays on detached leaves fed with ABA. Two different methods consistently showed that leaf hydraulic conductance (Kleaf) was down-regulated by exogenous ABA, with strong variations depending on the genotype. Importantly, variation between isohydry and anisohydry correlated with Kleaf sensitivity to ABA, with Kleaf in the most anisohydric genotypes being unresponsive to the hormone. We propose that the observed response of Kleaf to ABA may be part of the overall ABA regulation of leaf water status.


Asunto(s)
Ácido Abscísico/farmacología , Regulación hacia Abajo/efectos de los fármacos , Hojas de la Planta/fisiología , Vitis/genética , Vitis/fisiología , Agua/fisiología , Variación Genética , Genotipo , Modelos Biológicos , Exudados de Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Vitis/efectos de los fármacos
14.
Plant Physiol ; 172(2): 749-764, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27436830

RESUMEN

Assessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables simulated by a crop model in current (35 years × 55 sites) and future conditions into six scenarios of temperature and water deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+5°C); (4) analyzing the genetic variation of plant performance for each environmental scenario. Forty-eight quantitative trait loci (QTLs) of yield were identified by association genetics using a multi-environment multi-locus model. Eight and twelve QTLs were associated to tolerances to heat and drought stresses because they were specific to hot and dry scenarios, respectively, with low or even negative allelic effects in favorable scenarios. Twenty-four QTLs improved yield in favorable conditions but showed nonsignificant effects under stress; they were therefore associated with higher sensitivity. Our approach showed a pattern of QTL effects expressed as functions of environmental variables and scenarios, allowing us to suggest hypotheses for mechanisms and candidate genes underlying each QTL. It can be used for assessing the performance of genotypes and the contribution of genomic regions under current and future stress situations and to accelerate breeding for drought-prone environments.


Asunto(s)
Biomasa , Sequías , Genoma de Planta/genética , Calor , Adaptación Fisiológica/genética , Alelos , Mapeo Cromosómico , Cambio Climático , Ecosistema , Europa (Continente) , Genotipo , Hibridación Genética , Fenotipo , Análisis de Componente Principal , Sitios de Carácter Cuantitativo/genética , Estrés Fisiológico , Zea mays/clasificación , Zea mays/genética , Zea mays/crecimiento & desarrollo
15.
Proc Natl Acad Sci U S A ; 113(32): 8963-8, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457942

RESUMEN

Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.


Asunto(s)
Cruzamiento , Transpiración de Plantas , Vitis/fisiología , Agua/metabolismo , Productos Agrícolas , Sitios de Carácter Cuantitativo , Vitis/genética
16.
J Exp Bot ; 65(21): 6205-18, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25381432

RESUMEN

In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified. This is of particular interest within species such as Vitis vinifera L. where continuous variation in the level of isohydry has been observed among cultivars. With this objective, a 2 year experiment was conducted on the pseudo-F1 progeny from a cross between the two widespread cultivars Syrah and Grenache using a phenotyping platform coupled to a controlled-environment chamber. Potted plants of all the progeny were analysed for ΨM, transpiration rate, and soil-to-leaf hydraulic conductance, under both well-watered and water deficit conditions. A high genetic variability was found for all the above traits. Four quantitative trait loci (QTLs) were detected for ΨM under water deficit conditions, and 28 other QTLs were detected for the different traits in either condition. Genetic variation in ΨM maintenance under water deficit weakly correlated with drought-induced reduction in transpiration rate in the progeny, and QTLs for both traits did not completely co-localize. This indicates that genetic variation in the control of ΨM under water deficit was not due simply to variation in transpiration sensitivity to soil drying. Possible origins of the diversity in (an)isohydric behaviours in grapevine are discussed on the basis of concurrent variations in soil-to-leaf hydraulic conductance and stomatal control of transpiration.


Asunto(s)
Hojas de la Planta/fisiología , Transpiración de Plantas , Sitios de Carácter Cuantitativo , Vitis/genética , Agua/fisiología , Sequías , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...