Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
Article En | MEDLINE | ID: mdl-38639701

BACKGROUND: Extracellular vesicles (EVs) isolated from human heart-derived cells have shown promise in suppressing inflammation and fibroblast proliferation. However, their precise benefits in atrial fibrillation (AF) prevention and the role of their antifibrotic/anti-inflammatory properties remain unclear. OBJECTIVES: The purpose of this study was to conduct a head-to-head comparison of antiarrhythmic strategies to prevent postoperative AF using a rat model of sterile pericarditis. Specifically, we aimed to assess the efficacy of amiodarone (a classic antiarrhythmic drug), colchicine (an anti-inflammatory agent), and EVs derived from human heart-derived cells, which possess anti-inflammatory and antifibrotic properties, on AF induction, inflammation, and fibrosis progression. METHODS: Heart-derived cells were cultured from human atrial appendages under serum-free xenogen-free conditions. Middle-aged Sprague Dawley rats were randomized into different groups, including sham operation, sterile pericarditis with amiodarone treatment, sterile pericarditis with colchicine treatment (2 dose levels), and sterile pericarditis with intra-atrial injection of EVs or vehicle. Invasive electrophysiological testing was performed 3 days after surgery before sacrifice. RESULTS: Sterile pericarditis increased the likelihood of inducing AF. Colchicine and EVs exhibited anti-inflammatory effects, but only EV treatment significantly reduced AF probability, whereas colchicine showed a positive trend without statistical significance. EVs and high-dose colchicine reduced atrial fibrosis by 46 ± 2% and 26 ± 2%, respectively. Amiodarone prevented AF induction but had no effect on inflammation or fibrosis. CONCLUSIONS: In this study, both amiodarone and EVs prevented AF, whereas treatment with colchicine was ineffective. The additional anti-inflammatory and antifibrotic effects of EVs suggest their potential as a comprehensive therapeutic approach for AF prevention, surpassing the effects of amiodarone or colchicine.

2.
Theranostics ; 14(2): 608-621, 2024.
Article En | MEDLINE | ID: mdl-38169629

Rationale: Extracellular vesicles (EVs) from human explant-derived cells injected directly into the atria wall muscle at the time of open chest surgery reduce atrial fibrosis, atrial inflammation, and atrial fibrillation (AF) in a rat model of sterile pericarditis. Albeit a promising solution to prevent postoperative AF, the mechanism(s) underlying this effect are unknown and it is not clear if this benefit is dependent on EV dose. Methods: To determine the dose-efficacy relationship of EVs from human explant-derived cells in a rat model of sterile pericarditis. Increasing doses of EVs (106, 107, 108 or 109) or vehicle control were injected into the atria of middle-age male Sprague-Dawley rats at the time of talc application. A sham control group was included to demonstrate background inducibility. Three days after surgery, all rats underwent invasive electrophysiological testing prior to sacrifice. Results: Pericarditis increased the likelihood of inducing AF (p<0.05 vs. sham). All doses decreased the probability of inducing AF with maximal effects seen after treatment with the highest dose (109, p<0.05 vs. vehicle). Pericarditis increased atrial fibrosis while EV treatment limited the effect of pericarditis on atrial fibrosis with maximal effects seen after treatment with 108 or 109 EVs. Increasing EV dose was associated with progressive decreases in pro-inflammatory cytokine content, inflammatory cell infiltration, and oxidative stress. EVs decreased NLRP3 (NACHT, LRR, and PYD domains-containing protein-3) inflammasome activation though a direct effect on resident atrial fibroblasts and macrophages. This suppressive effect was exclusive to EVs produced by heart-derived cells as application of EVs from bone marrow or umbilical cords did not alter NLRP3 activity. Conclusions: Intramyocardial injection of incremental doses of EVs at the time of open chest surgery led to progressive reductions in atrial fibrosis and inflammatory markers. These effects combined to render atria resistant to the pro-arrhythmic effects of pericarditis which is mechanistically related to suppression of the NLRP3 inflammasome.


Atrial Fibrillation , Exosomes , Pericarditis , Male , Rats , Humans , Animals , Atrial Fibrillation/prevention & control , Atrial Fibrillation/drug therapy , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats, Sprague-Dawley , Fibrosis
3.
Metabolites ; 13(11)2023 Nov 10.
Article En | MEDLINE | ID: mdl-37999238

Sepsis is the result of an uncontrolled host inflammatory response to infection that may lead to septic shock with multiorgan failure and a high mortality rate. There is an urgent need to improve early diagnosis and to find markers identifying those who will develop septic shock and certainly a need to develop targeted treatments to prevent septic shock and its high mortality. Herein, we explore metabolic alterations due to mesenchymal stromal cell (MSC) treatment of septic shock. The clinical findings for this study were already reported; MSC therapy was well-tolerated and safe in patients in this phase I clinical trial. In this exploratory metabolomics study, 9 out of 30 patients received an escalating dose of MSC treatment, while 21 patients were without MSC treatment. Serum metabolomics profiling was performed to detect and characterize metabolite changes due to MSC treatment and to help determine the sample size needed for a phase II clinical trial and to define a metabolomic response to MSC treatment. Serum metabolites were measured using 1H-NMR and HILIC-MS at times 0, 24 and 72 h after MSC infusion. The results demonstrated the significant impact of MSC treatment on serum metabolic changes in a dose- and time-dependent manner compared to non-MSC-treated septic shock patients. This study suggests that plasma metabolomics can be used to assess the response to MSC therapy and that treatment-related metabolomics effects can be used to help determine the sample size needed in a phase II trial. As this study was not powered to detect outcome, how the treatment-induced metabolomic changes described in this study of MSC-treated septic shock patients are related to outcomes of septic shock in the short and long term will need to be explored in a larger adequately powered phase II clinical trial.

4.
JCI Insight ; 8(15)2023 06 29.
Article En | MEDLINE | ID: mdl-37384420

Almost half of patients recovering from open-chest surgery experience atrial fibrillation (AF) that results principally from inflammation in the pericardial space surrounding the heart. Given that postoperative AF is associated with increased mortality, effective measures to prevent AF after open-chest surgery are highly desirable. In this study, we tested the concept that extracellular vesicles (EVs) isolated from human atrial explant-derived cells can prevent postoperative AF. Middle-aged female and male rats were randomized to undergo sham operation or induction of sterile pericarditis followed by trans-epicardial injection of human EVs or vehicle into the atrial tissue. Pericarditis increased the probability of inducing AF while EV treatment abrogated this effect in a sex-independent manner. EV treatment reduced infiltration of inflammatory cells and production of pro-inflammatory cytokines. Atrial fibrosis and hypertrophy seen after pericarditis were markedly attenuated by EV pretreatment, an effect attributable to suppression of fibroblast proliferation by EVs. Our study demonstrates that injection of EVs at the time of open-chest surgery shows prominent antiinflammatory effects and prevents AF due to sterile pericarditis. Translation of this finding to patients might provide an effective new strategy to prevent postoperative AF by reducing atrial inflammation and fibrosis.


Atrial Fibrillation , Extracellular Vesicles , Pericarditis , Middle Aged , Humans , Male , Female , Rats , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/prevention & control , Inflammation/complications , Heart Atria , Fibrosis
5.
Mol Ther Nucleic Acids ; 32: 80-93, 2023 Jun 13.
Article En | MEDLINE | ID: mdl-36969553

The cell origin-specific payloads within extracellular vesicles (EVs) mediate therapeutic bioactivity for a wide variety of stem cell types. In this study, we profiled the microRNA (miRNA) and protein cargos found within EVs produced by three clinical-grade stem cell products of different ontogenies being considered for clinical application, namely bone marrow-derived mesenchymal stromal cells (BM-MSCs), heart-derived cells (HDCs), and umbilical cord-derived MSCs (UC-MSCs). Although several miRNAs (757) and proteins (420) were found in common, each producer cell type expressed unique miRNA profiles when the most highly expressed transcripts were compared. Differential expression analysis revealed that BM-MSCs and HDCs were quite similar, while UC-MSCs had the greatest number of unique miRNAs and proteins. Despite these differences, all three EVs promoted cell adhesion/migration, immune response, platelet aggregation, protein translation/stabilization, and RNA processing. EVs from BM-MSCs were implicated in apoptosis, cell-cycle progression, collagen formation, heme pigment synthesis, and smooth muscle differentiation, while HDC and UC-MSC EVs were found to regulate complement activation, endopeptidase activity, and matrix metallopeptidases. Overall, miRNA and protein profiling reveal functional differences between three leading stem cell products. These findings provide a framework for mechanistic exploration of candidate therapeutic molecules driving the salutary effects of EVs.

6.
Mult Scler Relat Disord ; 61: 103779, 2022 May.
Article En | MEDLINE | ID: mdl-35367874

BACKGROUND: Mesenchymal stem cell (MSC) therapies are being evaluated in multiple sclerosis (MS) for possible neural repair. To date, the potential benefits on cognition have received little attention. The objective of the current study was to comprehensively evaluate cognition before and after MSC therapy in those with MS as part of a double-blind, phase II clinical trial. METHODS: Twenty-eight individuals with a confirmed diagnosis of MS were randomly assigned into two study arms. Cognition was evaluated using an expanded Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) battery. The battery was administered at Week 0, Week 24, and Week 48 and results were analysed at the group and individual level. RESULTS: No detectable effect of MSC-mediated neural repair was noted in the short-term with respect to cognition, although some cognitive stability or improvement was observed. Decline was noted in some cognitive areas immediately following the procedure at Week 24; though these were temporary with performance returning to baseline levels at Week 48. CONCLUSIONS: While MSC therapy does not lead to improvement in cognition, at least in the short-term, neither does the procedure have lasting deleterious effects. The current findings lend support to the safety and feasibility of MSC therapy as a potentially viable treatment option for individuals with MS.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Multiple Sclerosis , Cognition , Double-Blind Method , Humans , Multiple Sclerosis/drug therapy
7.
Stem Cell Res Ther ; 13(1): 20, 2022 01 15.
Article En | MEDLINE | ID: mdl-35033181

BACKGROUND: Although 90% of infections with the novel coronavirus 2 (COVID-19) are mild, many patients progress to acute respiratory distress syndrome (ARDS) which carries a high risk of mortality. Given that this dysregulated immune response plays a key role in the pathology of COVID-19, several clinical trials are underway to evaluate the effect of immunomodulatory cell therapy on disease progression. However, little is known about the effect of ARDS associated pro-inflammatory mediators on transplanted stem cell function and survival, and any deleterious effects could undermine therapeutic efficacy. As such, we assessed the impact of inflammatory cytokines on the viability, and paracrine profile (extracellular vesicles) of bone marrow-derived mesenchymal stromal cells, heart-derived cells, and umbilical cord-derived mesenchymal stromal cells. METHODS: All cell products were manufactured and characterized to established clinical release standards by an accredited clinical cell manufacturing facility. Cytokines and Extracellular vesicles in the cell conditioned media were profiled using proteomic array and nanoparticle tracking analysis. Using a survey of the clinical literature, 6 cytotoxic cytokines implicated in the progression of COVID-19 ARDS. Flow cytometry was employed to determine receptor expression of these 6 cytokines in three cell products. Based on clinical survey and flow cytometry data, a cytokine cocktail that mimics cytokine storm seen in COVID-19 ARDS patients was designed and the impact on cytokine cocktail on viability and paracrine secretory ability of cell products were assessed using cell viability and nanoparticle tracking analysis. RESULTS: Flow cytometry revealed the presence of receptors for all cytokines but IL-6, which was subsequently excluded from further experimentation. Despite this widespread expression, exposure of each cell type to individual cytokines at doses tenfold greater than observed clinically or in combination at doses associated with severe ARDS did not alter cell viability or extracellular vesicle character/production in any of the 3 cell products. CONCLUSIONS: The paracrine production and viability of the three leading cell products under clinical evaluation for the treatment of severe COVID-19 ARDS are not altered by inflammatory mediators implicated in disease progression.


Acute Lung Injury , COVID-19 , Mesenchymal Stem Cell Transplantation , Acute Lung Injury/therapy , Cytokines , Humans , Proteomics , SARS-CoV-2
8.
Acta Biomater ; 109: 109-120, 2020 06.
Article En | MEDLINE | ID: mdl-32302726

Coverage of blood contacting surfaces by a functional endothelial layer is likely required to induce and maintain homeostasis. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source that may represent a reasonable alternative to vascular derived cells. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. We found that BOECs express markedly lower levels of eNOS protein (34% ± 13%, Western blot) and mRNA (29% ± 17%, qRT-PCR), as well as exhibiting reduced activity (49% ± 18%, Nitrite analysis) when compared to human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells. HUVECs grown on fibronectin, type I collagen, or laminin -coated surfaces exhibited significant reduction of eNOS mRNA and protein expression. However, no decrease in eNOS levels was observed in BOECs. Interestingly BOECs expressed significantly higher Collagen (Col) I compared to HUVECs, and blocking Col I synthesis significantly enhanced eNOS expression in BOECs. Inhibition of ß1 integrin, focal adhesion kinase (FAK), or actin polymerization increased eNOS in both BOECs and HUVECs suggesting involvement of a signaling pathway culminating in stabilization of the cytoskeleton. Finally, we demonstrated that a Rho-associated protein kinases (ROCK) inhibitor, as a disruptor of actin stabilization, enhanced both eNOS expression and bioactivity. Taken together, our findings demonstrate that cell-ECM interactions are fundamental to the regulation of eNOS in BOECs and suggest that disruption of key intracellular pathways (such as ROCK) may be necessary to enhance functional activity of an endothelialized surface. STATEMENT OF SIGNIFICANCE: Development of biocompatible blood-contacting biomaterial surfaces has not been possible to date, leading many investigators to believe that a complete autologous endothelial layer will be necessary. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. In this study, we show that eNOS displays limited expression in cultured BOECs. We further demonstrate that a strong negative regulation of eNOS is mediated by collagen substrates and that treatment with ROCK inhibitor could enhance both eNOS expression and activity in BOECs and help to rapidly establish a functional autologous endothelial layer on cardiovascular biomaterials.


Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Nitric Oxide Synthase Type III/metabolism , Actins/drug effects , Actins/metabolism , Amides/pharmacology , Collagen Type I/metabolism , Cytoskeleton/drug effects , Focal Adhesion Kinase 1/metabolism , Humans , Integrin beta1/metabolism , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
9.
Biomaterials ; 247: 120010, 2020 07.
Article En | MEDLINE | ID: mdl-32259654

While encapsulation of cells within protective nanoporous gel cocoons increases cell retention and pro-survival integrin signaling, the influence of cocoon size and intra-capsular cell-cell interactions on therapeutic repair are unknown. Here, we employ a microfluidic platform to dissect the impact of cocoon size and intracapsular cell number on the regenerative potential of transplanted heart explant-derived cells. Deterministic increases in cocoon size boosted the proportion of multicellular aggregates within cocoons, reduced vascular clearance of transplanted cells and enhanced stimulation of endogenous repair. The latter being attributable to cell-cell stimulation of cytokine and extracellular vesicle production while also broadening of the miRNA cargo within extracellular vesicles. Thus, by tuning cocoon size and cell occupancy, the paracrine signature and retention of transplanted cells can be enhanced to promote paracrine stimulation of endogenous tissue repair.


Extracellular Vesicles , Myocardial Infarction , Heart , Humans , Microfluidics , Myocardium , Paracrine Communication
10.
Stem Cell Res Ther ; 10(1): 316, 2019 11 04.
Article En | MEDLINE | ID: mdl-31685023

BACKGROUND: Serum-free xenogen-free defined media and continuous controlled physiological cell culture conditions have been developed for stem cell therapeutics, but the effect of these conditions on the relative potency of the cell product is unknown. As such, we conducted a head-to-head comparison of cell culture conditions on human heart explant-derived cells using established in vitro measures of cell potency and in vivo functional repair. METHODS: Heart explant-derived cells cultured from human atrial or ventricular biopsies within a serum-free xenogen-free media and a continuous physiological culture environment were compared to cells cultured under traditional (high serum) cell culture conditions in a standard clean room facility. RESULTS: Transitioning from traditional high serum cell culture conditions to serum-free xenogen-free conditions had no effect on cell culture yields but provided a smaller, more homogenous, cell product with only minor antigenic changes. Culture within continuous physiologic conditions markedly boosted cell proliferation while increasing the expression of stem cell-related antigens and ability of cells to stimulate angiogenesis. Intramyocardial injection of physiologic cultured cells into immunodeficient mice 1 week after coronary ligation translated into improved cardiac function and reduced scar burden which was attributable to increased production of pro-healing cytokines, extracellular vesicles, and microRNAs. CONCLUSIONS: Continuous physiological cell culture increased cell growth, paracrine output, and treatment outcomes to provide the greatest functional benefit after experimental myocardial infarction.


Myocardium/pathology , Wound Healing , Aged , Animals , Cell Proliferation , Cells, Cultured , Culture Media, Serum-Free , Female , Heart Atria/pathology , Heart Ventricles/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice, Inbred NOD , Mice, SCID , Middle Aged , Myocardial Ischemia/pathology , Paracrine Communication
11.
ACS Nano ; 12(5): 4338-4350, 2018 05 22.
Article En | MEDLINE | ID: mdl-29660269

Although cocooning explant-derived cardiac stem cells (EDCs) in protective nanoporous gels (NPGs) prior to intramyocardial injection boosts long-term cell retention, the number of EDCs that finally engraft is trivial and unlikely to account for salutary effects on myocardial function and scar size. As such, we investigated the effect of varying the NPG content within capsules to alter the physical properties of cocoons without influencing cocoon dimensions. Increasing NPG concentration enhanced cell migration and viability while improving cell-mediated repair of injured myocardium. Given that the latter occurred with NPG content having no detectable effect on the long-term engraftment of transplanted cells, we found that changing the physical properties of cocoons prompted explant-derived cardiac stem cells to produce greater amounts of cytokines, nanovesicles, and microRNAs that boosted the generation of new blood vessels and new cardiomyocytes. Thus, by altering the physical properties of cocoons by varying NPG content, the paracrine signature of encapsulated cells can be enhanced to promote greater endogenous repair of injured myocardium.


Myocardial Infarction/drug therapy , Myocytes, Cardiac/drug effects , Nanoparticles/chemistry , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Gels/chemistry , Gels/pharmacology , Humans , Myocardial Infarction/pathology , Particle Size , Porosity , Surface Properties
12.
Am J Respir Crit Care Med ; 197(3): 337-347, 2018 02 01.
Article En | MEDLINE | ID: mdl-28960096

RATIONALE: In septic animal models mesenchymal stem (stromal) cells (MSCs) modulate inflammation, enhance tissue repair and pathogen clearance, and reduce death. OBJECTIVES: To conduct a phase I dose escalation trial of MSCs in septic shock with the primary objective of examining the safety and tolerability of MSCs. METHODS: We enrolled nine participants within 24 hours of admission to the ICU. A control cohort of 21 participants was enrolled before starting the MSC interventional cohort to characterize expected adverse events (AEs) and to serve as a comparator for the intervention cohort. Three separate MSC dose cohorts, with three participants per cohort, received a single intravenous dose of 0.3, 1.0, and 3.0 × 106 cells/kg. A prespecified safety plan monitored participants for the occurrence of AEs; cytokines were collected at prespecified time points. MEASUREMENTS AND MAIN RESULTS: Ages of participants in the interventional versus observational cohorts were median of 71 (range, 38-91) and 61 (range, 23-95). Acute Physiology and Chronic Health Evaluation scores were median of 25 (range, 11-28) and 26 (range, 17-32). MSC doses ranged from 19 to 250 million cells. There were no prespecified MSC infusion-associated or serious unexpected AEs, nor any safety or efficacy signals for the expected AEs or the measured cytokines between the interventional and observational cohorts. CONCLUSIONS: The infusion of freshly cultured allogenic bone marrow-derived MSCs, up to a dose of 3 million cells/kg (250 million cells), into participants with septic shock seems safe. Clinical trial registered with www.clinicaltrials.gov (NCT02421484).


Immunotherapy/methods , Mesenchymal Stem Cell Transplantation/methods , Shock, Septic/therapy , Adult , Age Factors , Aged , Allografts , Confidence Intervals , Female , Follow-Up Studies , Humans , Infusions, Intravenous , Male , Middle Aged , Risk Assessment , Sex Factors , Shock, Septic/diagnosis , Shock, Septic/mortality , Survival Rate , Treatment Outcome , Young Adult
13.
PLoS One ; 11(6): e0156935, 2016.
Article En | MEDLINE | ID: mdl-27258003

Smooth muscle cells (SMCs) are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor-BB (PDGF-BB) and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH) at 0 d), SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH) at 0 d) and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH) at 0 d). Bromodeoxyuridine (BrdU) incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2), and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining)). Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.


Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Collagen/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Proto-Oncogene Proteins c-sis/pharmacology , Actins/genetics , Actins/metabolism , Animals , Apoptosis , Becaplermin , Blotting, Western , Bone Marrow Cells/ultrastructure , Cell Proliferation/drug effects , Cells, Cultured , Female , Mice , Microscopy, Electron, Transmission , Muscle, Smooth, Vascular/ultrastructure , Myocytes, Smooth Muscle/ultrastructure , Real-Time Polymerase Chain Reaction
14.
Am J Respir Cell Mol Biol ; 54(4): 461-8, 2016 Apr.
Article En | MEDLINE | ID: mdl-26291195

We assessed the pulmonary hemodynamic response to vascular endothelial growth factor receptor, type 2, inhibition using SU5416 (SU) with and without chronic hypoxia (CH) in different background strains and colonies of rats. A single subcutaneous injection of SU (20 mg/kg) or vehicle was administered to different substrains of Sprague-Dawley (SD) rats, and they were compared with Lewis and Fischer rats, with and without exposure to CH (10% O2 for 3 wk). Remarkably, a unique colony of SD rats from Charles River Laboratories, termed the SD-hyperresponsive type, exhibited severe pulmonary arterial hypertension (PAH) with SU alone, characterized by increased right ventricular systolic pressure, right ventricular/left ventricular plus septal weight ratio, and arteriolar occlusive lesions at 7-8 weeks (all P < 0.0001 versus vehicle). In contrast, the other SD substrain from Harlan Laboratories, termed SD-typical type, as well as Fischer rats, developed severe PAH only when exposed to SU and CH, whereas Lewis rats showed only a minimal response. All SD-typical type rats survived for up to 13 weeks after SU/CH, whereas SD-hyperresponsive type rats exhibited mortality after SU and SU/CH (35% and 50%, respectively) at 8 weeks. Fischer rats exposed to SU/CH exhibited the greatest mortality at 8 weeks (78%), beginning as early as 4 weeks after SU and preceded by right ventricle enlargement. Of note, a partial recovery of PAH after 8 weeks was observed in the SD-typical type substrain only. In conclusion, variation in strain, even between colonies of the same strain, has a remarkable influence on the nature and severity of the response to SU, consistent with an important role for genetic modifiers of the PAH phenotype.


Disease Models, Animal , Hypertension, Pulmonary/pathology , Indoles/therapeutic use , Pyrroles/therapeutic use , Animals , Hypertension, Pulmonary/drug therapy , Hypoxia , Rats , Rats, Inbred F344 , Rats, Inbred Lew , Rats, Sprague-Dawley , Species Specificity
15.
Circ Res ; 117(7): 645-54, 2015 Sep 11.
Article En | MEDLINE | ID: mdl-26195220

RATIONALE: Pulmonary arterial hypertension (PAH) remains a progressive and eventually lethal disease characterized by increased pulmonary vascular resistance because of loss of functional lung microvasculature, primarily at the distal (intracinar) arteriolar level. Cell-based therapies offer the potential to repair and regenerate the lung microcirculation and have shown promise in preclinical evaluation in experimental models of PAH. OBJECTIVE: The Pulmonary Hypertension and Angiogenic Cell Therapy (PHACeT) trial was a phase 1, dose-escalating clinical study of the tolerability of culture-derived endothelial progenitor cells, transiently transfected with endothelial nitric oxide synthase, in patients with PAH refractory to PAH-specific therapies. METHODS AND RESULTS: Seven to 50 million endothelial nitric oxide synthase-transfected endothelial progenitor cells, divided into 3 doses on consecutive days, were delivered into the right atrium via a multiport pulmonary artery catheter during continuous hemodynamic monitoring in an intensive care unit setting. Seven patients (5 women) received treatment from December 2006 to March 2010. Cell infusion was well tolerated, with no evidence of short-term hemodynamic deterioration; rather, there was a trend toward improvement in total pulmonary resistance during the 3-day delivery period. However, there was 1 serious adverse event (death) which occurred immediately after discharge in a patient with severe, end stage disease. Although there were no sustained hemodynamic improvements at 3 months, 6-minute walk distance was significantly increased at 1, 3, and 6 months. CONCLUSION: Delivery of endothelial progenitor cells overexpressing endothelial nitric oxide synthase was tolerated hemodynamically in patients with PAH. Furthermore, there was evidence of short-term hemodynamic improvement, associated with long-term benefits in functional and quality of life assessments. However, future studies are needed to further establish the efficacy of this therapy. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00469027.


Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/therapy , Nitric Oxide Synthase Type III/administration & dosage , Nitric Oxide Synthase Type III/genetics , Stem Cell Transplantation/methods , Adult , Aged , Female , Humans , Hypertension, Pulmonary/enzymology , Male , Middle Aged , Stem Cells/enzymology
16.
Circulation ; 129(21): 2125-35, 2014 May 27.
Article En | MEDLINE | ID: mdl-24657995

BACKGROUND: Pulmonary arterial hypertension (PAH) is a lethal disease characterized by excessive proliferation of pulmonary vascular endothelial cells (ECs). Hereditary PAH (HPAH) is often caused by mutations in the bone morphogenetic protein receptor type 2 gene (BMPR2). However, the mechanisms by which these mutations cause PAH remain unclear. Therefore, we screened for dysregulated proteins in blood-outgrowth ECs of HPAH patients with BMPR2 mutations compared with healthy control subjects. METHODS AND RESULTS: A total of 416 proteins were detected with 2-dimensional PAGE in combination with liquid chromatography/tandem mass spectrometry analysis, of which 22 exhibited significantly altered abundance in blood-outgrowth ECs from patients with HPAH. One of these proteins, translationally controlled tumor protein (TCTP), was selected for further study because of its well-established role in promoting tumor cell growth and survival. Immunostaining showed marked upregulation of TCTP in lungs from patients with HPAH and idiopathic PAH, associated with remodeled vessels of complex lesions. Increased TCTP expression was also evident in the SU5416 rat model of severe and irreversible PAH, associated with intimal lesions, colocalizing with proliferating ECs and the adventitia of remodeled vessels but not in the vascular media. Furthermore, silencing of TCTP expression increased apoptosis and abrogated the hyperproliferative phenotype of blood-outgrowth ECs from patients with HPAH, raising the possibility that TCTP may be a link in the emergence of apoptosis-resistant, hyperproliferative vascular cells after EC apoptosis. CONCLUSION: Proteomic screening identified TCTP as a novel mediator of endothelial prosurvival and growth signaling in PAH, possibly contributing to occlusive pulmonary vascular remodeling triggered by EC apoptosis.


Biomarkers, Tumor/physiology , Endothelial Cells/pathology , Endothelial Cells/physiology , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/genetics , Proteomics/methods , Adult , Aged , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Familial Primary Pulmonary Hypertension , Female , Humans , Male , Middle Aged , Mutation/genetics , Rats , Rats, Sprague-Dawley , Survival/physiology , Tumor Protein, Translationally-Controlled 1 , Young Adult
17.
Biomaterials ; 35(1): 133-42, 2014 Jan.
Article En | MEDLINE | ID: mdl-24099706

Transplantation of ex vivo proliferated cardiac stem cells (CSCs) is an emerging therapy for ischemic cardiomyopathy but outcomes are limited by modest engraftment and poor long-term survival. As such, we explored the effect of single cell microencapsulation to increase CSC engraftment and survival after myocardial injection. Transcript and protein profiling of human atrial appendage sourced CSCs revealed strong expression the pro-survival integrin dimers αVß3 and α5ß1- thus rationalizing the integration of fibronectin and fibrinogen into a supportive intra-capsular matrix. Encapsulation maintained CSC viability under hypoxic stress conditions and, when compared to standard suspended CSC, media conditioned by encapsulated CSCs demonstrated superior production of pro-angiogenic/cardioprotective cytokines, angiogenesis and recruitment of circulating angiogenic cells. Intra-myocardial injection of encapsulated CSCs after experimental myocardial infarction favorably affected long-term retention of CSCs, cardiac structure and function. Single cell encapsulation prevents detachment induced cell death while boosting the mechanical retention of CSCs to enhance repair of damaged myocardium.


Cell Survival , Heart/physiopathology , Hydrogels , Myocardial Ischemia/pathology , Myocytes, Cardiac/cytology , Stem Cells/cytology , Aged , Cell Adhesion Molecules/metabolism , Culture Media, Conditioned , Female , Humans , Male , Middle Aged , Myocardial Ischemia/physiopathology , Myocytes, Cardiac/metabolism , Stem Cells/metabolism
18.
Biomaterials ; 34(30): 7292-301, 2013 Oct.
Article En | MEDLINE | ID: mdl-23810253

Endothelial coverage of blood-contacting biomaterial surfaces has been difficult to achieve. A readily available autologous source of endothelium combined with an appropriate attachment substrate would improve the chances of developing functional surfaces. Here we describe methods to derive high quantities of human endothelial progenitor cells (EPCs) from peripheral blood monocytes (PBMCs) obtained by leukapheresis. These cells are morphologically and phenotypically similar to human umbilical vein endothelial cells (HUVECs); however, their expression of the key vascular factor - endothelial nitric oxide synthase (eNOS) - is markedly lower than that observed in HUVECs. We demonstrate that eNOS levels can be restored with plasmid-based transfection. To promote EPC adherence we examined substrate enhancement with a matricellular protein associated with vascular repair, osteopontin (OPN). We observed dose- and time-dependent responses of OPN in EPC adhesion, spreading, and haptotactic migration of EPCs in Boyden chamber assays. In addition, the combination of the OPN coating and enhanced eNOS expression in EPCs maximally enhanced cell adhesion (39.6 ± 1.7 and 49.4 ± 2.4 cells/field for 0 and 1 nM OPN) and spreading (84.7 ± 3.5% and 92.1 ± 3.9% for 0 nM and 1 nM OPN). These data highlight the direct effects of OPN on peripheral blood derived EPCs, suggesting that OPN works by mediating progenitor cell adhesion during vascular injury. The combination of autologous EPCs and OPN coatings could be a promising method of developing functional endothelialized surfaces.


Endothelial Cells/cytology , Monocytes/cytology , Nitric Oxide Synthase Type III/metabolism , Osteopontin/pharmacology , Stem Cells/cytology , Transfection , Antibodies, Blocking/pharmacology , Blotting, Western , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Shape/drug effects , DNA/metabolism , Electric Impedance , Electricity , Electroporation , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Immobilized Proteins/pharmacology , Microarray Analysis , RNA/genetics , RNA/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Surface Properties/drug effects
19.
Am J Pathol ; 182(5): 1541-51, 2013 May.
Article En | MEDLINE | ID: mdl-23518411

The capacity of imatinib mesylate to reverse established pulmonary arterial hypertension (PAH) has been attributed to a reduction in pulmonary arterial muscularization via inhibition of platelet-derived growth factor receptor-ß on vascular smooth muscle cells. However, there is also a significant immunomodulatory component to the action of imatinib that may account for its efficacy in PAH. We found that monocrotaline-induced pulmonary hypertension was associated with a significant decrease in pulmonary natural killer (NK) cells and T lymphocytes and the accumulation of macrophages in the lungs of F344 rats. The prevention of pulmonary hypertension by imatinib blocked these changes in pulmonary leukocyte content and induced elevations in pulmonary interferon-γ, tumor necrosis factor α, and IL-10, corresponding to the enhanced activity of splenic NK cells ex vivo. Treatment with anti-asialo GM1 antiserum (ASGM1), which ablated circulating NK cells and depleted T cells, eliminated the therapeutic benefit of imatinib. ASGM1-treated animals also exhibited significant pulmonary arteriolar muscularization in response to monocrotaline challenge compared with immunocompetent controls despite daily imatinib administration to both groups. In the athymic rat, imatinib decreased right ventricular hypertrophy and pulmonary arteriolar muscularization in monocrotaline-challenged animals versus saline-treated controls but did not prevent pulmonary macrophage accumulation or the development of pulmonary hypertension. These data demonstrate that the immunomodulatory effects of imatinib are critical to its therapeutic action in experimental PAH.


Benzamides/therapeutic use , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/pathology , Lymphocytes/metabolism , Piperazines/therapeutic use , Pyrimidines/therapeutic use , Animals , Apoptosis/drug effects , Benzamides/pharmacology , Cytokines/metabolism , Disease Models, Animal , Hypertension, Pulmonary/chemically induced , Hypertrophy, Right Ventricular/pathology , Imatinib Mesylate , Immunomodulation/drug effects , Leukocyte Count , Lymphocyte Depletion , Lymphocytes/drug effects , Male , Monocrotaline , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Piperazines/pharmacology , Pyrimidines/pharmacology , Rats , Rats, Inbred F344 , Rats, Nude
20.
Am J Pathol ; 179(3): 1549-59, 2011 Sep.
Article En | MEDLINE | ID: mdl-21718678

Because both endothelin-1 (ET-1) and angiotensin II (AngII) are independent mediators of arterial remodeling, we sought to determine the role of ET receptor inhibition in AngII-accelerated atherosclerosis and aortic aneurysm formation. We administered saline or AngII and/or bosentan, an endothelin receptor antagonist (ERA) for 7, 14, or 28 days to 6-week- and 6-month-old apolipoprotein E-knockout mice. AngII treatment increased aortic atherosclerosis, which was reduced by ERA. ET-1 immunostaining was localized to macrophage-rich regions in aneurysmal vessels. ERA did not prevent AngII-induced aneurysm formation but instead may have increased aneurysm incidence. In AngII-treated animals with aneurysms, ERA had a profound effect on the non-aneurysmal thoracic aorta via increasing wall thickness, collagen/elastin ratio, wall stiffness, and viscous responses. These observations were confirmed in acute in vitro collagen sheet production models in which ERA inhibited AngII's dose-dependent effect on collagen type 1 α 1 (COL1A1) gene transcription. However, chronic treatment reduced matrix metalloproteinase 2 mRNA expression but enhanced COL3A1, tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2 mRNA expressions. These data confirm a role for the ET system in AngII-accelerated atherosclerosis but suggest that ERA therapy is not protective against the formation of AngII-induced aneurysms and can paradoxically stimulate a chronic arterial matrix remodeling response.


Angiotensin II/adverse effects , Aortic Aneurysm/chemically induced , Apolipoproteins E , Atherosclerosis/chemically induced , Endothelin-1/physiology , Vasoconstrictor Agents/adverse effects , Animals , Antihypertensive Agents/pharmacology , Aorta/physiology , Biomechanical Phenomena , Bosentan , Cardiovascular Agents/pharmacology , Cell Adhesion , Collagen/metabolism , Down-Regulation , Endothelin-1/antagonists & inhibitors , Endothelin-1/biosynthesis , Integrin beta1/metabolism , Interferon-gamma/metabolism , Mice , Mice, Knockout , Stress, Physiological , Sulfonamides/pharmacology
...