Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39005309

RESUMEN

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia regulate the development of the antennal lobe in young adult flies, leading us to ask if glia also drive experience-dependent plasticity. Here we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first two days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post-synaptic activity. The highly conserved engulfment receptor Draper is required for this critical period plasticity. Specifically, ensheathing glia upregulate Draper expression, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Crucially, synapse pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased. These data demonstrate experience-dependent pruning of synapses in olfactory circuitry and argue that the Drosophila antennal lobe will be a powerful model for defining the function of glia in critical period plasticity.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38565270

RESUMEN

Molecular genetic approaches in small model organisms like Drosophila have helped to elucidate fundamental principles of neuronal cell biology. Much less is understood about glial cells, although interest in using invertebrate preparations to define their in vivo functions has increased significantly in recent years. This review focuses on our current understanding of the three major neuron-associated glial cell types found in the Drosophila central nervous system (CNS)-astrocytes, cortex glia, and ensheathing glia. Together, these cells act like mammalian astrocytes and microglia; they associate closely with neurons including surrounding neuronal cell bodies and proximal neurites, regulate synapses, and engulf neuronal debris. Exciting recent work has shown critical roles for these CNS glial cells in neural circuit formation, function, plasticity, and pathology. As we gain a more firm molecular and cellular understanding of how Drosophila CNS glial cells interact with neurons, it is clear that they share significant molecular and functional attributes with mammalian glia and will serve as an excellent platform for mechanistic studies of glial function.

3.
Front Cell Neurosci ; 17: 1166199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333889

RESUMEN

Glial phagocytic activity refines connectivity, though molecular mechanisms regulating this exquisitely sensitive process are incompletely defined. We developed the Drosophila antennal lobe as a model for identifying molecular mechanisms underlying glial refinement of neural circuits in the absence of injury. Antennal lobe organization is stereotyped and characterized by individual glomeruli comprised of unique olfactory receptor neuronal (ORN) populations. The antennal lobe interacts extensively with two glial subtypes: ensheathing glia wrap individual glomeruli, while astrocytes ramify considerably within them. Phagocytic roles for glia in the uninjured antennal lobe are largely unknown. Thus, we tested whether Draper regulates ORN terminal arbor size, shape, or presynaptic content in two representative glomeruli: VC1 and VM7. We find that glial Draper limits the size of individual glomeruli and restrains their presynaptic content. Moreover, glial refinement is apparent in young adults, a period of rapid terminal arbor and synapse growth, indicating that synapse addition and elimination occur simultaneously. Draper has been shown to be expressed in ensheathing glia; unexpectedly, we find it expressed at high levels in late pupal antennal lobe astrocytes. Surprisingly, Draper plays differential roles in ensheathing glia and astrocytes in VC1 and VM7. In VC1, ensheathing glial Draper plays a more significant role in shaping glomerular size and presynaptic content; while in VM7, astrocytic Draper plays the larger role. Together, these data indicate that astrocytes and ensheathing glia employ Draper to refine circuitry in the antennal lobe before the terminal arbors reach their mature form and argue for local heterogeneity of neuron-glia interactions.

4.
Curr Opin Neurobiol ; 79: 102689, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822142

RESUMEN

The importance of glial cells has become increasingly apparent over the past 20 years, yet compared to neurons we still know relatively little about these essential cells. Most critical glial cell functions are conserved in Drosophila glia, often using the same key molecular players as their vertebrate counterparts. The relative simplicity of the Drosophila nervous system, combined with a vast array of powerful genetic tools, allows us to further dissect the molecular composition and functional roles of glia in ways that would be much more cumbersome or not possible in higher vertebrate systems. Importantly, Drosophila genetics allow for in vivo manipulation, and their transparent body wall enables in vivo imaging of glia in intact animals throughout early development. Here we discuss recent advances in Drosophila glial development detailing how these cells take on their mature morphologies and interact with neurons to perform their important functional roles in the nervous system.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Neuroglía/fisiología , Neuronas/fisiología , Proteínas de Drosophila/genética , Vertebrados
5.
PLoS Genet ; 18(6): e1010257, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737721

RESUMEN

Elucidating signal transduction mechanisms of innate immune pathways is essential to defining how they elicit distinct cellular responses. Toll-like receptors (TLR) signal through their cytoplasmic TIR domains which bind other TIR domain-containing adaptors. dSARM/SARM1 is one such TIR domain adaptor best known for its role as the central axon degeneration trigger after injury. In degeneration, SARM1's domains have been assigned unique functions: the ARM domain is auto-inhibitory, SAM-SAM domain interactions mediate multimerization, and the TIR domain has intrinsic NAD+ hydrolase activity that precipitates axonal demise. Whether and how these distinct functions contribute to TLR signaling is unknown. Here we show divergent signaling requirements for dSARM in injury-induced axon degeneration and TLR-mediated developmental glial phagocytosis through analysis of new knock-in domain and point mutations. We demonstrate intragenic complementation between reciprocal pairs of domain mutants during development, providing evidence for separability of dSARM functional domains in TLR signaling. Surprisingly, dSARM's NAD+ hydrolase activity is strictly required for both degenerative and developmental signaling, demonstrating that TLR signal transduction requires dSARM's enzymatic activity. In contrast, while SAM domain-mediated dSARM multimerization is important for axon degeneration, it is dispensable for TLR signaling. Finally, dSARM functions in a linear genetic pathway with the MAP3K Ask1 during development but not in degenerating axons. Thus, we propose that dSARM exists in distinct signaling states in developmental and pathological contexts.


Asunto(s)
Proteínas del Dominio Armadillo , NAD , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/genética , Hidrolasas/metabolismo , Fagocitosis/genética , Transducción de Señal/genética
6.
Front Cell Neurosci ; 16: 826483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401121

RESUMEN

Not only do glia form close associations with neurons throughout the central nervous system (CNS), but glial cells also interact closely with other glial cells. As these cells mature, they undergo a phenomenon known as glial tiling, where they grow to abut one another, often without invading each other's boundaries. Glial tiling occurs throughout the animal kingdom, from fruit flies to humans; however, not much is known about the glial-glial interactions that lead to and maintain this tiling. Drosophila provide a strong model to investigate glial-glial tiling, where tiling occurs both among individual glial cells of the same subtype, as well as between those of different subtypes. Furthermore, the spatial segregation of the CNS allows for the unique ability to visualize and manipulate inter-subtype interactions. Previous work in Drosophila has suggested an interaction between cortex glia and astrocytes, where astrocytes cross the normal neuropil-cortex boundary in response to dysfunctional cortex glia. Here, we further explore this interaction by implementing an automated pipeline to more fully characterize this astrocyte-cortex glial relationship. By quantifying and correlating the extent of cortex glial dysfunction and aberrant astrocyte infiltration using automated analysis, we maximize the size of the quantified dataset to reveal subtle patterns in astrocyte-cortex glial interactions. We provide a guide for creating and validating a fully-automated image analysis pipeline for exploring these interactions, and implement this pipeline to describe a significant correlation between cortex glial dysfunction and aberrant astrocyte infiltration, as well as demonstrate variations in their relationship across different regions of the CNS.

7.
Dev Cell ; 53(5): 498-499, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32516594

RESUMEN

In a recent issue of Nature, Lammert et al. demonstrate that DNA damage drives AIM2-mediated pyroptosis during normal brain development, preventing anxiety-like behaviors acquisition in adults and revealing an important role for non-apoptotic mechanisms of cell death during neurodevelopment.


Asunto(s)
Inflamasomas , Piroptosis , Caspasa 1/genética , Daño del ADN , Proteínas de Unión al ADN/genética
8.
Dev Cell ; 48(4): 506-522.e6, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30745142

RESUMEN

Glia continuously survey neuronal health during development, providing trophic support to healthy neurons while rapidly engulfing dying ones. These diametrically opposed functions necessitate a foolproof mechanism enabling glia to unambiguously identify those neurons to support versus those to engulf. To ensure specificity, glia are proposed to interact with dying neurons via a series of carefully choreographed steps. However, these crucial interactions are largely obscure. Here we show that dying neurons and glia communicate via Toll-receptor-regulated innate immune signaling. Neuronal apoptosis drives processing and activation of the Toll-6 ligand, Spätzle5. This cue activates a dSARM-mediated Toll-6 transcriptional pathway in glia, which controls the expression of the Draper engulfment receptor. Pathway loss drives early-onset neurodegeneration, underscoring its functional importance. Our results identify an upstream priming signal that prepares glia for phagocytosis. Thus, a core innate immune pathway plays an unprecedented role setting the valence of neuron-glia interactions during development.


Asunto(s)
Encéfalo/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Fagocitosis/fisiología , Animales , Animales Modificados Genéticamente , Apoptosis/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Proteínas de la Membrana/metabolismo
9.
Dev Cell ; 47(6): 688-689, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562510

RESUMEN

The blood brain barrier (BBB) is critical to ensure proper nervous system function and organismal health. In this issue of Developmental Cell, Babatz and colleagues explore the mechanisms of BBB maintenance and uncover a potential evolutionary link by which BBB glia construct paracellular barriers to ensure uninterrupted protection throughout development.


Asunto(s)
Barrera Hematoencefálica , Drosophila , Animales , Transporte Biológico , Neuroglía , Uniones Estrechas
10.
Proc Natl Acad Sci U S A ; 115(44): 11316-11321, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30327343

RESUMEN

Astrocytes are important regulators of neural circuit function and behavior in the healthy and diseased nervous system. We screened for molecules in Drosophila astrocytes that modulate neuronal hyperexcitability and identified multiple components of focal adhesion complexes (FAs). Depletion of astrocytic Tensin, ß-integrin, Talin, focal adhesion kinase (FAK), or matrix metalloproteinase 1 (Mmp1), resulted in enhanced behavioral recovery from genetic or pharmacologically induced seizure. Overexpression of Mmp1, predicted to activate FA signaling, led to a reciprocal enhancement of seizure severity. Blockade of FA-signaling molecules in astrocytes at basal levels of CNS excitability resulted in reduced astrocytic coverage of the synaptic neuropil and expression of the excitatory amino acid transporter EAAT1. However, induction of hyperexcitability after depletion of FA-signaling components resulted in enhanced astrocyte coverage and an approximately twofold increase in EAAT1 levels. Our work identifies FA-signaling molecules as important regulators of astrocyte outgrowth and EAAT1 expression under normal physiological conditions. Paradoxically, in the context of hyperexcitability, this pathway negatively regulates astrocytic process outgrowth and EAAT1 expression, and their blockade leading to enhanced recovery from seizure.


Asunto(s)
Astrocitos/metabolismo , Adhesiones Focales/metabolismo , Glutamatos/metabolismo , Animales , Transporte Biológico/fisiología , Drosophila/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo
11.
Genes Dev ; 31(20): 2023-2038, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29138279

RESUMEN

Most glial functions depend on establishing intimate morphological relationships with neurons. Significant progress has been made in understanding neuron-glia signaling at synaptic and axonal contacts, but how glia support neuronal cell bodies is unclear. Here we explored the growth and functions of Drosophila cortex glia (which associate almost exclusively with neuronal cell bodies) to understand glia-soma interactions. We show that cortex glia tile with one another and with astrocytes to establish unique central nervous system (CNS) spatial domains that actively restrict glial growth, and selective ablation of cortex glia causes animal lethality. In an RNAi-based screen, we identified αSNAP (soluble NSF [N-ethylmalemeide-sensitive factor] attachment protein α) and several components of vesicle fusion and recycling machinery as essential for the maintenance of cortex glial morphology and continued contact with neurons. Interestingly, loss of the secreted neurotrophin Spätzle 3 (Spz3) phenocopied αSNAP phenotypes, which included loss of glial ensheathment of neuron cell bodies, increased neuronal cell death, and defects in animal behavior. Rescue experiments suggest that Spz3 can exert these effects only over very short distances. This work identifies essential roles for glial ensheathment of neuronal cell bodies in CNS homeostasis as well as Spz3 as a novel signaling factor required for maintenance of cortex glial morphology and neuron-glia contact.


Asunto(s)
Encéfalo/embriología , Proteínas de Drosophila/fisiología , Neuroglía/citología , Neuronas/citología , Animales , Astrocitos/citología , Conducta Animal , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Supervivencia Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Fusión de Membrana , Morfogénesis , Interferencia de ARN
12.
Neuron ; 95(1): 78-91.e5, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683272

RESUMEN

Axon degeneration is a hallmark of neurodegenerative disease and neural injury. Axotomy activates an intrinsic pro-degenerative axon death signaling cascade involving loss of the NAD+ biosynthetic enzyme Nmnat/Nmnat2 in axons, activation of dSarm/Sarm1, and subsequent Sarm-dependent depletion of NAD+. Here we identify Axundead (Axed) as a mediator of axon death. axed mutants suppress axon death in several types of axons for the lifespan of the fly and block the pro-degenerative effects of activated dSarm in vivo. Neurodegeneration induced by loss of the sole fly Nmnat ortholog is also fully blocked by axed, but not dsarm, mutants. Thus, pro-degenerative pathways activated by dSarm signaling or Nmnat elimination ultimately converge on Axed. Remarkably, severed axons morphologically preserved by axon death pathway mutations remain integrated in circuits and able to elicit complex behaviors after stimulation, indicating that blockade of axon death signaling results in long-term functional preservation of axons.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Axones/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Nicotinamida-Nucleótido Adenililtransferasa/genética , Degeneración Walleriana/genética , Animales , Animales Modificados Genéticamente , Proteínas del Dominio Armadillo/metabolismo , Antenas de Artrópodos/lesiones , Antenas de Artrópodos/inervación , Axotomía , Conducta Animal , Western Blotting , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Aseo Animal , Inmunidad Activa , NAD/metabolismo , Neuronas/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Optogenética , Degeneración Walleriana/metabolismo , Alas de Animales/lesiones , Alas de Animales/inervación
13.
J Negat Results Biomed ; 12: 13, 2013 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-24010830

RESUMEN

BACKGROUND: Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons. RESULTS: We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12. CONCLUSIONS: Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.


Asunto(s)
Ganglios Espinales/metabolismo , Fosfatos de Inositol/metabolismo , Neuronas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Sirolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Animales , Técnicas Biosensibles , Péptido Relacionado con Gen de Calcitonina/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Ganglios Espinales/efectos de los fármacos , Células HEK293 , Heterocigoto , Humanos , Hipersensibilidad/patología , Inflamación/patología , Ratones , Modelos Biológicos , Neuronas/efectos de los fármacos , Péptidos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo
14.
Curr Opin Neurobiol ; 23(6): 1073-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23896311

RESUMEN

Despite their predominance in the nervous system, the precise ways in which glial cells develop and contribute to overall neural function remain poorly defined in any organism. Investigations in simple model organisms have identified remarkable morphological, molecular, and functional similarities between invertebrate and vertebrate glial subtypes. Invertebrates like Drosophila and Caenorhabditis elegans offer an abundance of tools for in vivo genetic manipulation of single cells or whole populations of glia, ease of access to neural tissues throughout development, and the opportunity for forward genetic analysis of fundamental aspects of glial cell biology. These features suggest that invertebrate model systems have high potential for vastly improving the understanding of glial biology. This review highlights recent work in Drosophila and other invertebrates that reveal new insights into basic mechanisms involved in glial development.


Asunto(s)
Neurogénesis/fisiología , Neuroglía/fisiología , Animales , Invertebrados , Neuroglía/citología
15.
Nat Chem Biol ; 9(4): 257-63, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23396078

RESUMEN

Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild-type zebrafish and mice. To our surprise, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in nontransgenic animals, including humans.


Asunto(s)
Canales Iónicos/metabolismo , Fototransducción/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Procesos Fotoquímicos/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas de Pez Cebra/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/efectos de la radiación , Cisteína/química , Cisteína/metabolismo , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/efectos de la radiación , Embrión no Mamífero , Humanos , Canales Iónicos/agonistas , Canales Iónicos/genética , Rayos Láser , Luz , Fototransducción/efectos de la radiación , Ratones , Actividad Motora/fisiología , Actividad Motora/efectos de la radiación , Mutación , Oxidación-Reducción , Procesos Fotoquímicos/efectos de la radiación , Piperazinas/farmacología , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/efectos de la radiación , Relación Estructura-Actividad , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio , Pez Cebra , Proteínas de Pez Cebra/agonistas , Proteínas de Pez Cebra/genética
16.
Development ; 139(24): 4666-74, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23172918

RESUMEN

This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.


Asunto(s)
Oído Interno/embriología , Oxidorreductasas Intramoleculares/fisiología , Factores Inhibidores de la Migración de Macrófagos/fisiología , Factores de Crecimiento Nervioso/fisiología , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Oído Interno/efectos de los fármacos , Oído Interno/crecimiento & desarrollo , Oído Interno/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/farmacología , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/farmacología , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Neuritas/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Órgano Espiral/embriología , Órgano Espiral/crecimiento & desarrollo , Órgano Espiral/metabolismo , Ganglio Espiral de la Cóclea/embriología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo , Ganglio Espiral de la Cóclea/metabolismo
17.
Cell ; 149(4): 923-35, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22559944

RESUMEN

Structural genomic variations represent a major driving force of evolution, and a burst of large segmental gene duplications occurred in the human lineage during its separation from nonhuman primates. SRGAP2, a gene recently implicated in neocortical development, has undergone two human-specific duplications. Here, we find that both duplications (SRGAP2B and SRGAP2C) are partial and encode a truncated F-BAR domain. SRGAP2C is expressed in the developing and adult human brain and dimerizes with ancestral SRGAP2 to inhibit its function. In the mouse neocortex, SRGAP2 promotes spine maturation and limits spine density. Expression of SRGAP2C phenocopies SRGAP2 deficiency. It underlies sustained radial migration and leads to the emergence of human-specific features, including neoteny during spine maturation and increased density of longer spines. These results suggest that inhibition of SRGAP2 function by its human-specific paralogs has contributed to the evolution of the human neocortex and plays an important role during human brain development.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Proteínas Activadoras de GTPasa/genética , Duplicación de Gen , Neuronas/citología , Duplicaciones Segmentarias en el Genoma , Animales , Movimiento Celular , Espinas Dendríticas/metabolismo , Evolución Molecular , Humanos , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Estructura Terciaria de Proteína , Especificidad de la Especie
18.
J Cell Sci ; 125(Pt 14): 3390-401, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22467852

RESUMEN

Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Seudópodos/metabolismo , Actinas/metabolismo , Animales , Células COS , Movimiento Celular , Chlorocebus aethiops , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Neuronas/citología , Neuronas/metabolismo , Estructura Terciaria de Proteína
19.
Cell ; 138(5): 990-1004, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19737524

RESUMEN

During brain development, proper neuronal migration and morphogenesis is critical for the establishment of functional neural circuits. Here we report that srGAP2 negatively regulates neuronal migration and induces neurite outgrowth and branching through the ability of its F-BAR domain to induce filopodia-like membrane protrusions resembling those induced by I-BAR domains in vivo and in vitro. Previous work has suggested that in nonneuronal cells filopodia dynamics decrease the rate of cell migration and the persistence of leading edge protrusions. srGAP2 knockdown reduces leading process branching and increases the rate of neuronal migration in vivo. Overexpression of srGAP2 or its F-BAR domain has the opposite effects, increasing leading process branching and decreasing migration. These results suggest that F-BAR domains are functionally diverse and highlight the functional importance of proteins directly regulating membrane deformation for proper neuronal migration and morphogenesis.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Neurogénesis , Neuronas/citología , Animales , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Proteínas Activadoras de GTPasa , Ratones , Seudópodos/metabolismo
20.
J Anat ; 213(5): 547-54, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19014362

RESUMEN

Developing sensory axons grow into the spinal cord in a three-step process: the axons extend toward and into the cord, then branch rostrally and caudally to establish a longitudinal pathway, and finally grow into the grey matter. This study investigated regulation by cAMP of the longitudinal extension of this pathway within the spinal cord. The cAMP pathway was pharmacologically altered in chicken embryos to determine its effects on the establishment of the longitudinal extension of the dorsal funiculus. A forskolin-induced increase in cAMP in ovo inhibited longitudinal growth by sensory afferents. Furthermore, blocking cAMP activation of protein kinase A (PKA) in ovo with H-89 substantially increased longitudinal extension. These results demonstrate a specific role for the cAMP/PKA pathway in the initial longitudinal spinal afferent growth in the chicken embryo.


Asunto(s)
AMP Cíclico/metabolismo , Neuronas Aferentes/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Médula Espinal/embriología , Vías Aferentes/fisiología , Animales , Axones/fisiología , Embrión de Pollo , AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Isoquinolinas/farmacología , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA