Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Cell Host Microbe ; 31(11): 1804-1819.e9, 2023 11 08.
Article En | MEDLINE | ID: mdl-37883976

The Segatella copri (formerly Prevotella copri) complex (ScC) comprises taxa that are key members of the human gut microbiome. It was previously described to contain four distinct phylogenetic clades. Combining targeted isolation with large-scale metagenomic analysis, we defined 13 distinct Segatella copri-related species, expanding the ScC complex beyond four clades. Complete genome reconstruction of thirteen strains from seven species unveiled the presence of genetically diverse large circular extrachromosomal elements. These elements are consistently present in most ScC species, contributing to intra- and inter-species diversities. The nine species-level clades present in humans display striking differences in prevalence and intra-species genetic makeup across human populations. Based on a meta-analysis, we found reproducible associations between members of ScC and the male sex and positive correlations with lower visceral fat and favorable markers of cardiometabolic health. Our work uncovers genomic diversity within ScC, facilitating a better characterization of the human microbiome.


Gastrointestinal Microbiome , Microbiota , Humans , Male , Gastrointestinal Microbiome/genetics , Metagenome , Phylogeny , Prevotella , Female
2.
J Hazard Mater ; 459: 132299, 2023 10 05.
Article En | MEDLINE | ID: mdl-37597386

Hydrocarbon pollution poses substantial environmental risks to water and soil. Bioremediation, which utilizes microorganisms to manage pollutants, offers a cost-effective solution. However, the role of viruses, particularly bacteriophages (phages), in bioremediation remains unexplored. This study examines the diversity and activity of hydrocarbon-degradation genes encoded by environmental viruses, focusing on phages, within public databases. We identified 57 high-quality phage-encoded auxiliary metabolic genes (AMGs) related to hydrocarbon degradation, which we refer to as virus-encoded hydrocarbon degradation genes (vHYDEGs). These genes are encoded by taxonomically diverse aquatic phages and highlight the under-characterized global virosphere. Six protein families involved in the initial alkane hydroxylation steps were identified. Phylogenetic analyses revealed the diverse evolutionary trajectories of vHYDEGs across habitats, revealing previously unknown biodegraders linked evolutionarily with vHYDEGs. Our findings suggest phage AMGs may contribute to alkane and aromatic hydrocarbon degradation, participating in the initial, rate-limiting hydroxylation steps, thereby aiding hydrocarbon pollution bioremediation and promoting their propagation. To support future research, we developed vHyDeg, a database containing identified vHYDEGs with comprehensive annotations, facilitating the screening of hydrocarbon degradation AMGs and encouraging their bioremediation applications.


Bacteriophages , Hydrocarbons , Biodegradation, Environmental , Phylogeny , Bacteriophages/genetics , Alkanes
...