Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 13(1): 21549, 2023 12 06.
Article En | MEDLINE | ID: mdl-38057439

Purification of valuable engineered proteins and enzymes can be laborious, costly, and generating large amount of chemical waste. Whilst enzyme immobilization can enhance recycling and reuse of enzymes, conventional methods for immobilizing engineered enzymes from purified samples are also inefficient with multiple-step protocols, regarding both the carrier preparation and enzyme binding. Nickel ferrite magnetic nanoparticles (NiFe2O4 MNPs) offer distinct advantages in both purification and immobilization of enzymes. In this work, we demonstrate the preparation of NiFe2O4 MNPs via a one-step solvothermal synthesis and their use in direct enzyme binding from cell lysates. These NiFe2O4 MNPs have showed an average diameter of 8.9 ± 1.7 nm from TEM analysis and a magnetization at saturation (Ms) value of 53.0 emu g-1 from SQUID measurement. The nickel binding sites of the MNP surface allow direct binding of three his-tagged enzymes, D-phenylglycine aminotransferase (D-PhgAT), Halomonas elongata ω-transaminase (HeωT), and glucose dehydrogenase from Bacillus subtilis (BsGDH). It was found that the enzymatic activities of all immobilized samples directly prepared from cell lysates were comparable to those prepared from the conventional immobilization method using purified enzymes. Remarkably, D-PhgAT supported on NiFe2O4 MNPs also showed similar activity to the purified free enzyme. By comparing on both carrier preparation and enzyme immobilization protocols, use of NiFe2O4 MNPs for direct enzyme immobilization from cell lysate can significantly reduce the number of steps, time, and use of chemicals. Therefore, NiFe2O4 MNPs can offer considerable advantages for use in both enzyme immobilization and protein purification in pharmaceutical and other chemical industries.


Magnetite Nanoparticles , Nickel , Nickel/chemistry , Magnetite Nanoparticles/chemistry , Ferric Compounds/chemistry , Enzymes, Immobilized/chemistry
2.
Anal Methods ; 15(46): 6468-6475, 2023 11 30.
Article En | MEDLINE | ID: mdl-37982303

Keratin, in the form of coarse sheep wool, has been identified as an undervalued natural resource, which with the appropriate tools (e.g. a keratinase biocatalyst) can be repurposed for various textile and industrial biotechnology applications. For these purposes, we describe a novel method for identifying keratinase activity through the use of α-keratin azure (KA), an anthraquinone dyed substrate. A colourimetric method monitored the keratinase activity of Proteinase K (PK), which degrades the KA substrate and releases soluble products that are observed at 595 nm. Initially, the azure dye standard, Remazol Brilliant Blue R (RBBR), was used to calibrate the assay and allowed the kinetics of the keratinase-catalysed reaction to be determined. The assay was also used to investigate substrate pre-treatment, as well as different reaction quenching/work up conditions. Milling and washing of the KA substrate provided the best reproducibility and centrifugation was the most effective method for removing unreacted starting material. This assay was then applied to investigate the reduction of the keratin disulfide bond on keratinase-catalysed degradation. This optimised, improved and robust method will enable identification of keratinases ideally suited for application in the valorisation of the α-keratin found in natural wool fibres.


Keratins , Peptide Hydrolases , Animals , Sheep , Keratins/metabolism , Reproducibility of Results , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Cytoskeleton/metabolism
3.
J Pharm Biomed Anal ; 216: 114798, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35561436

This study describes the first reported development of a rapid, generic gradient Ultra-High Performance Liquid Chromatography (UHPLC) methodology with targeted triple quadrupole MS/MS using electrospray positive ionisation to detect and unambiguously confirm the identity of 33 substituted 1, 2-diarylethamine (or diphenidine) derivatives in solid drug samples. The in-house synthesised library included a range of derivatives possessing either electron donating/withdrawing substituents, commonly included in combinatorial libraries, of varying size and lipophilicity on the phenyl ring. These test probes were used to investigate if their order of elution and that of their regioisomers were dependent on the position and type of the substituent on the phenyl ring. In addition, investigations into the retention mechanism of the diphenidines under reverse-phase UHPLC conditions were undertaken. Common adulterants found within seized bulk samples were assessed to prove that the methodology was specific, and the developed UHPLC-MS/MS (tG = 10 min) protocol was applied to confirm the identity of the psychoactive components within four seized bulk samples provided by law enforcement.


Piperidines , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Psychotropic Drugs/chemistry , Tandem Mass Spectrometry/methods
...