Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 73(5): 701-712, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38320268

RESUMEN

Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.e., hepatokine) induced by BAs and investigated its role in BA-induced metabolic improvements in mouse models of diet-induced obesity. Contrary to our expectation, under a high-fat diet (HFD), our Orm2 knockout (Orm2-KO) exhibited a lean phenotype compared with C57BL/6J control, partly due to the increased energy expenditure. However, when challenged with a HFD supplemented with cholic acid, Orm2-KO eliminated the antiobesity effect of BAs, indicating that ORM2 governs BA-induced metabolic improvements. Moreover, hepatic ORM2 overexpression partially replicated BA effects by enhancing insulin sensitivity. Mechanistically, ORM2 suppressed interferon-γ/STAT1 activities in inguinal white adipose tissue depots, forming the basis for anti-inflammatory effects of BAs and improving glucose homeostasis. In conclusion, our study provides new insights into the molecular mechanisms of BA-induced liver-adipose cross talk through ORM2 induction.


Asunto(s)
Ácidos y Sales Biliares , Orosomucoide , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Orosomucoide/metabolismo , Orosomucoide/farmacología , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos
2.
Endocr Rev ; 45(2): 190-209, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-37556371

RESUMEN

Over the past 4 decades, the clinical care of people living with HIV (PLWH) evolved from treatment of acute opportunistic infections to the management of chronic, noncommunicable comorbidities. Concurrently, our understanding of adipose tissue function matured to acknowledge its important endocrine contributions to energy balance. PLWH experience changes in the mass and composition of adipose tissue depots before and after initiating antiretroviral therapy, including regional loss (lipoatrophy), gain (lipohypertrophy), or mixed lipodystrophy. These conditions may coexist with generalized obesity in PLWH and reflect disturbances of energy balance regulation caused by HIV persistence and antiretroviral therapy drugs. Adipocyte hypertrophy characterizes visceral and subcutaneous adipose tissue depot expansion, as well as ectopic lipid deposition that occurs diffusely in the liver, skeletal muscle, and heart. PLWH with excess visceral adipose tissue exhibit adipokine dysregulation coupled with increased insulin resistance, heightening their risk for cardiovascular disease above that of the HIV-negative population. However, conventional therapies are ineffective for the management of cardiometabolic risk in this patient population. Although the knowledge of complex cardiometabolic comorbidities in PLWH continues to expand, significant knowledge gaps remain. Ongoing studies aimed at understanding interorgan communication and energy balance provide insights into metabolic observations in PLWH and reveal potential therapeutic targets. Our review focuses on current knowledge and recent advances in HIV-associated adipose tissue dysfunction, highlights emerging adipokine paradigms, and describes critical mechanistic and clinical insights.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por VIH , Humanos , Grasa Subcutánea/metabolismo , Tejido Adiposo/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/metabolismo , Adipoquinas/metabolismo , Adipoquinas/uso terapéutico , Enfermedades Cardiovasculares/metabolismo
3.
Elife ; 122023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37417957

RESUMEN

Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.


Asunto(s)
Glucosa , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Glucosa/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Ayuno/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxidación-Reducción , Flavoproteínas/metabolismo
4.
Nat Med ; 28(12): 2537-2546, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36536256

RESUMEN

Serotonin reuptake inhibitors and receptor agonists are used to treat obesity, anxiety and depression. Here we studied the role of the serotonin 2C receptor (5-HT2CR) in weight regulation and behavior. Using exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity, we identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Using the 5-HT2CR agonist lorcaserin, we found that depolarization of appetite-suppressing proopiomelanocortin neurons was impaired in knock-in mice. In conclusion, we demonstrate that 5-HT2CR is involved in the regulation of human appetite, weight and behavior. Our findings suggest that melanocortin receptor agonists might be effective in treating severe obesity in individuals carrying HTR2C variants. We suggest that HTR2C should be included in diagnostic gene panels for severe childhood-onset obesity.


Asunto(s)
Obesidad Mórbida , Receptor de Serotonina 5-HT2C , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Células HEK293 , Obesidad/genética , Receptor de Serotonina 5-HT2C/genética , Serotonina , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Adaptación Psicológica
5.
Cell Metab ; 34(12): 1932-1946.e7, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36243005

RESUMEN

Low-grade, sustained inflammation in white adipose tissue (WAT) characterizes obesity and coincides with type 2 diabetes mellitus (T2DM). However, pharmacological targeting of inflammation lacks durable therapeutic effects in insulin-resistant conditions. Through a computational screen, we discovered that the FDA-approved rheumatoid arthritis drug auranofin improved insulin sensitivity and normalized obesity-associated abnormalities, including hepatic steatosis and hyperinsulinemia in mouse models of T2DM. We also discovered that auranofin accumulation in WAT depleted inflammatory responses to a high-fat diet without altering body composition in obese wild-type mice. Surprisingly, elevated leptin levels and blunted beta-adrenergic receptor activity achieved by leptin receptor deletion abolished the antidiabetic effects of auranofin. These experiments also revealed that the metabolic benefits of leptin reduction were superior to immune impacts of auranofin in WAT. Our studies uncover important metabolic properties of anti-inflammatory treatments and contribute to the notion that leptin reduction in the periphery can be accomplished to treat obesity and T2DM.


Asunto(s)
Artritis Reumatoide , Diabetes Mellitus Tipo 2 , Animales , Ratones , Ratones Obesos , Hipoglucemiantes , Auranofina/farmacología , Auranofina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Obesidad/tratamiento farmacológico
6.
Elife ; 112022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35635747

RESUMEN

DNA Methyltransferase 3 A (DNMT3A) is an important facilitator of differentiation of both embryonic and hematopoietic stem cells. Heterozygous germline mutations in DNMT3A lead to Tatton-Brown-Rahman Syndrome (TBRS), characterized by obesity and excessive height. While DNMT3A is known to impact feeding behavior via the hypothalamus, here we investigated a role in adipocyte progenitors utilizing heterozygous knockout mice that recapitulate cardinal TBRS phenotypes. These mice become morbidly obese due to adipocyte enlargement and tissue expansion. Adipose tissue in these mice exhibited defects in preadipocyte maturation and precocious activation of inflammatory gene networks, including interleukin-6 signaling. Adipocyte progenitor cell lines lacking DNMT3A exhibited aberrant differentiation. Furthermore, mice in which Dnmt3a was specifically ablated in adipocyte progenitors showed enlarged fat depots and increased progenitor numbers, partly recapitulating the TBRS obesity phenotypes. Loss of DNMT3A led to constitutive DNA hypomethylation, such that the DNA methylation landscape of young adipocyte progenitors resemble that of older wild-type mice. Together, our results demonstrate that DNMT3A coordinates both the central and local control of energy storage required to maintain normal weight and prevent inflammatory obesity.


Asunto(s)
Discapacidad Intelectual , Errores Innatos del Metabolismo , Obesidad Mórbida , Adipogénesis , Animales , ADN , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Discapacidad Intelectual/genética , Ratones
7.
Diabetes ; 70(9): 2014-2025, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34233931

RESUMEN

Persons living with HIV (PLWH) manifest chronic disorders of brown and white adipose tissues that lead to diabetes and metabolic syndrome. The mechanisms that link viral factors to defective adipose tissue function and abnormal energy balance in PLWH remain incompletely understood. Here, we explored how the HIV accessory protein viral protein R (Vpr) contributes to adaptive thermogenesis in two mouse models and human adipose tissues. Uncoupling protein 1 (UCP1) gene expression was strongly increased in subcutaneous white adipose tissue (WAT) biopsy specimens from PLWH and in subcutaneous WAT of the Vpr mice, with nearly equivalent mRNA copy number. Histology and functional studies confirmed beige transformation in subcutaneous but not visceral WAT in the Vpr mice. Measurements of energy balance indicated Vpr mice displayed metabolic inflexibility and could not shift efficiently from carbohydrate to fat metabolism during day-night cycles. Furthermore, Vpr mice showed a marked inability to defend body temperature when exposed to 4°C. Importantly, Vpr couples higher tissue catecholamine levels with UCP1 expression independent of ß-adrenergic receptors. Our data reveal surprising deficits of adaptive thermogenesis that drive metabolic inefficiency in HIV-1 Vpr mouse models, providing an expanded role for viral factors in the pathogenesis of metabolic disorders in PLWH.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Obesidad/metabolismo , Termogénesis/fisiología , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Tejido Adiposo Pardo/metabolismo , Adulto , Temperatura Corporal/fisiología , Metabolismo Energético/fisiología , Femenino , Humanos , Persona de Mediana Edad , Proteína Desacopladora 1/metabolismo
8.
Mol Metab ; 48: 101221, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33771728

RESUMEN

OBJECTIVE: White adipose tissue (WAT) expansion regulates energy balance and overall metabolic homeostasis. The absence or loss of WAT occurring through lipodystrophy and lipoatrophy contributes to the development of hepatic steatosis and insulin resistance. We previously demonstrated that sole small ubiquitin-like modifier (SUMO) E2-conjugating enzyme Ube2i represses human adipocyte differentiation. The role of Ube2i during WAT development remains unknown. METHODS: To determine how Ube2i impacts body composition and energy balance, we generated adipocyte-specific Ube2i knockout mice (Ube2ia-KO). CRISPR/Cas9 gene editing inserted loxP sites flanking exons 3 and 4 at the Ube2i locus. Subsequent genetic crosses to Adipoq-Cre transgenic mice allowed deletion of Ube2i in white and brown adipocytes. We measured multiple metabolic endpoints that describe energy balance and carbohydrate metabolism in Ube2ia-KO and littermate controls during postnatal growth. RESULTS: Surprisingly, Ube2ia-KO mice developed hyperinsulinemia and hepatic steatosis. Global energy balance defects emerged from dysfunctional WAT marked by pronounced local inflammation, loss of serum adipokines, hepatomegaly, and near absence of major adipose tissue depots. We observed progressive lipoatrophy that commences in the early adolescent period. CONCLUSIONS: Our results demonstrate that Ube2i expression in mature adipocytes allows WAT expansion during postnatal growth. Deletion of Ube2i in fat cells compromises and diminishes adipocyte function that induces WAT inflammation and ectopic lipid accumulation in the liver. Our findings reveal an indispensable role for Ube2i during white adipocyte expansion and endocrine control of energy balance.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Eliminación de Gen , Hiperinsulinismo/complicaciones , Hiperinsulinismo/metabolismo , Lipodistrofia/complicaciones , Lipodistrofia/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Adipoquinas/sangre , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Composición Corporal/genética , Metabolismo Energético/genética , Femenino , Hiperinsulinismo/genética , Resistencia a la Insulina/genética , Lipodistrofia/genética , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética
9.
Trends Endocrinol Metab ; 32(5): 320-332, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33712368

RESUMEN

White adipose tissue (WAT) depends on coordinated regulation of transcriptional and metabolic pathways to respond to whole-body energy demands. We highlight metabolites that contribute to biosynthetic reactions for WAT expansion. Recent studies have precisely defined how byproducts of carbohydrate and lipid metabolism affect physiological and endocrine functions in adipocytes. We emphasize the critical emerging roles of short-chain fatty acids (SCFAs) and tricarboxylic acid (TCA) cycle metabolites that connect lipogenesis to WAT energy balance and endocrine functions. These insights address how adipocytes use small molecules generated from central carbon metabolism to measure responses to nutritional stress.


Asunto(s)
Acetilcoenzima A , Tejido Adiposo Blanco , Acetilcoenzima A/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Humanos , Metabolismo de los Lípidos
10.
Diabetes ; 70(3): 720-732, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33323395

RESUMEN

CD11c+ macrophages/dendritic cells (MDCs) are increased and display the classically activated M1-like phenotype in obese adipose tissue (AT) and may contribute to AT inflammation and insulin resistance. Stat1 is a key transcription factor for MDC polarization into the M1-like phenotype. Here, we examined the role of Stat1 in obesity-induced AT MDC polarization and inflammation and insulin resistance using mice with specific knockout of Stat1 in MDCs (cKO). Stat1 was upregulated and phosphorylated, indicating activation, early and persistently in AT and AT MDCs of wild-type mice fed a high-fat diet (HFD). Compared with littermate controls, cKO mice fed an HFD (16 weeks) had reductions in MDC (mainly CD11c+ macrophage) M1-like polarization and interferon-γ-expressing T-helper type 1 (Th1) cells but increases in interleukin 5-expressing Th2 cells and eosinophils in perigonadal and inguinal AT, and enhanced inguinal AT browning, with increased energy expenditure. cKO mice compared with controls also had significant reductions in triglyceride content in the liver and skeletal muscle and exhibited improved insulin sensitivity and glucose tolerance. Taken together, our results demonstrate that Stat1 in MDCs plays an important role in obesity-induced MDC M1-like polarization and AT inflammation and contributes to insulin resistance and metabolic dysfunctions in obese mice.


Asunto(s)
Tejido Adiposo/metabolismo , Antígeno CD11c/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/inmunología , Obesidad/metabolismo , Factor de Transcripción STAT1/metabolismo , Adulto , Animales , Western Blotting , Antígeno CD11c/genética , Células Cultivadas , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Inflamación/genética , Inflamación/inmunología , Resistencia a la Insulina/genética , Interleucina-5/metabolismo , Masculino , Ratones , Obesidad/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT1/genética
11.
Biochem Biophys Res Commun ; 534: 864-870, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33168190

RESUMEN

Bile acids have recently emerged as key metabolic hormones with beneficial impacts in multiple metabolic diseases. We previously discovered that hepatic bile acid overload distally modulates glucose and fatty acid metabolism in adipose tissues to exert anti-obesity effects. However, the detailed mechanisms that explain the salutary effects of serum bile acid elevation remain unclear. Here, proteomic profiling identified a new hepatokine, Orosomucoid (ORM) that governs liver-adipose tissue crosstalk. Hepatic ORMs were highly induced by both genetic and dietary bile acid overload. To address the direct metabolic effects of ORM, purified ORM proteins were administered during adipogenic differentiation of 3T3-L1 cells and mouse stromal vascular fibroblasts. ORM suppressed adipocyte differentiation and strongly inhibited gene expression of adipogenic transcription factors such as C/EBPß, KLF5, C/EBPα, and PPARγ. Taken together, our data clearly suggest that bile acid-induced ORM secretion from the liver blocks adipocyte differentiation, potentially linked to anti-obesity effect of bile acids.


Asunto(s)
Adipogénesis , Ácidos y Sales Biliares/metabolismo , Orosomucoide/metabolismo , Células 3T3-L1 , Animales , Bovinos , Fibroblastos/metabolismo , Lipogénesis , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Orosomucoide/análisis , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo , Proteómica
12.
Diabetes ; 69(12): 2630-2641, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32994273

RESUMEN

Obesity fosters low-grade inflammation in white adipose tissue (WAT) that may contribute to the insulin resistance that characterizes type 2 diabetes. However, the causal relationship of these events remains unclear. The established dominance of STAT1 function in the immune response suggests an obligate link between inflammation and the comorbidities of obesity. To this end, we sought to determine how STAT1 activity in white adipocytes affects insulin sensitivity. STAT1 expression in WAT inversely correlated with fasting plasma glucose in both obese mice and humans. Metabolomic and gene expression profiling established STAT1 deletion in adipocytes (STAT1 a-KO ) enhanced mitochondrial function and accelerated tricarboxylic acid cycle flux coupled with reduced fat cell size in subcutaneous WAT depots. STAT1 a-KO reduced WAT inflammation, but insulin resistance persisted in obese mice. Rather, elimination of type I cytokine interferon-γ activity enhanced insulin sensitivity in diet-induced obesity. Our findings reveal a permissive mechanism that bridges WAT inflammation to whole-body insulin sensitivity.


Asunto(s)
Tejido Adiposo/metabolismo , Regulación de la Expresión Génica/fisiología , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Factor de Transcripción STAT1/metabolismo , Adipocitos/metabolismo , Animales , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Femenino , Glucosa/metabolismo , Homeostasis/fisiología , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Interferencia de ARN , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Factor de Transcripción STAT1/genética , Receptor de Interferón gamma
13.
Am J Physiol Endocrinol Metab ; 319(4): E667-E677, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32799658

RESUMEN

MicroRNA-30a (miR-30a) impacts adipocyte function, and its expression in white adipose tissue (WAT) correlates with insulin sensitivity in obesity. Bioinformatic analysis demonstrates that miR-30a expression contributes to 2% of all miRNA expression in human tissues. However, molecular mechanisms of miR-30a function in fat cells remain unclear. Here, we expanded our understanding of how miR-30a expression contributes to antidiabetic peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity and metabolic functions in adipocytes. We found that WAT isolated from diabetic patients shows reduced miR-30a levels and diminished expression of the canonical PPARγ target genes ADIPOQ and FABP4 relative to lean counterparts. In human adipocytes, miR-30a required PPARγ for maximal expression, and the PPARγ agonist rosiglitazone robustly induced miR-30a but not other miR-30 family members. Transcriptional activity studies in human adipocytes also revealed that ectopic expression of miR-30a enhanced the activity of rosiglitazone coupled with higher expression of fatty acid and glucose metabolism markers. Diabetic mice that overexpress ectopic miR-30a in subcutaneous WAT display durable reductions in serum glucose and insulin levels for more than 30 days. In agreement with our in vitro findings, RNA-seq coupled with Gene Set Enrichment Analysis (GSEA) suggested that miR-30a enabled activation of the beige fat program in vivo, as evidenced by enhanced mitochondrial biogenesis and induction of UCP1 expression. Metabolomic and gene expression profiling established that the long-term effects of ectopic miR-30a expression enable accelerated glucose metabolism coupled with subcutaneous WAT hyperplasia. Together, we establish a putative role of miR-30a in mediating PPARγ activity and advancing metabolic programs of white to beige fat conversion.


Asunto(s)
Adipocitos Marrones/fisiología , Redes Reguladoras de Genes/genética , MicroARNs/fisiología , Adipocitos Blancos/metabolismo , Animales , Glucemia/metabolismo , Células Cultivadas , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Hipoglucemiantes/farmacología , Resistencia a la Insulina/genética , Metabolómica , Ratones , MicroARNs/genética , Oligopéptidos/metabolismo , Biogénesis de Organelos , PPAR gamma/agonistas , Rosiglitazona/farmacología
14.
Nat Commun ; 11(1): 2316, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385268

RESUMEN

Our early-life environment has a profound influence on developing organs that impacts metabolic function and determines disease susceptibility across the life-course. Using a rat model for exposure to an endocrine disrupting chemical (EDC), we show that early-life chemical exposure causes metabolic dysfunction in adulthood and reprograms histone marks in the developing liver to accelerate acquisition of an adult epigenomic signature. This epigenomic reprogramming persists long after the initial exposure, but many reprogrammed genes remain transcriptionally silent with their impact on metabolism not revealed until a later life exposure to a Western-style diet. Diet-dependent metabolic disruption was largely driven by reprogramming of the Early Growth Response 1 (EGR1) transcriptome and production of metabolites in pathways linked to cholesterol, lipid and one-carbon metabolism. These findings demonstrate the importance of epigenome:environment interactions, which early in life accelerate epigenomic aging, and later in adulthood unlock metabolically restricted epigenetic reprogramming to drive metabolic dysfunction.


Asunto(s)
Epigenoma/genética , Animales , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Disruptores Endocrinos/toxicidad , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Masculino , Ratas
15.
J Mol Med (Berl) ; 98(4): 469, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32346756

RESUMEN

The corrected References in Table 1 are presented in this paper.

16.
J Mol Med (Berl) ; 98(4): 451-467, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067063

RESUMEN

The pancreatic islet is a dense cellular network comprised of several cell types with endocrine function vital in the control of glucose homeostasis, metabolism, and feeding behavior. Within the islet, endocrine hormones also form an intricate paracrine network with supportive cells (endothelial, neuronal, immune) and secondary signaling molecules regulating cellular function and survival. Modulation of these signals has potential consequences for diabetes development, progression, and therapeutic intervention. Beta cell loss, reduced endogenous insulin secretion, and dysregulated glucagon secretion are hallmark features of both type 1 and 2 diabetes that not only impact systemic regulation of glucose, but also contribute to the function and survival of cells within the islet. Advancing research and technology have revealed new islet biology (cellular identity and transcriptomes) and identified previously unrecognized paracrine signals and mechanisms (somatostatin and ghrelin paracrine actions), while shifting prior views of intraislet communication. This review will summarize the paracrine signals regulating islet endocrine function and survival, the disruption and dysfunction that occur in diabetes, and potential therapeutic targets to preserve beta cell mass and function.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Comunicación Paracrina , Transducción de Señal , Animales , Supervivencia Celular , Ghrelina/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Humanos , Islotes Pancreáticos/citología , Polipéptido Pancreático/metabolismo , Somatostatina/metabolismo , Células Secretoras de Somatostatina/metabolismo
17.
Am J Physiol Cell Physiol ; 318(1): C63-C72, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31596606

RESUMEN

Endocrine-disrupting chemicals interact with transcription factors essential for adipocyte differentiation. Exposure to endocrine-disrupting chemicals corresponds with elevated risks of obesity, but the effects of these compounds on human cells remain largely undefined. Widespread use of bisphenol AF (BPAF) as a bisphenol A (BPA) alternative in the plastics industry presents unknown health risks. To this end, we discovered that BPAF interferes with the metabolic function of mature human adipocytes. Although 4-day exposures to BPAF accelerated adipocyte differentiation, we observed no effect on mature fat cell marker genes. Additional gene and protein expression analysis showed that BPAF treatment during human adipocyte differentiation failed to suppress the proinflammatory transcription factor STAT1. Microscopy and respirometry experiments demonstrated that BPAF impaired mitochondrial function and structure. To test the hypothesis that BPAF fosters vulnerabilities to STAT1 activation, we treated mature adipocytes previously exposed to BPAF with interferon-γ (IFNγ). BPAF increased IFNγ activation of STAT1 and exposed mitochondrial vulnerabilities that disrupt adipocyte lipid and carbohydrate metabolism. Collectively, our data establish that BPAF activates inflammatory signaling pathways that degrade metabolic activity in human adipocytes. These findings suggest how the BPA alternative BPAF contributes to metabolic changes that correspond with obesity.


Asunto(s)
Adipocitos Blancos/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Metabolismo Energético/efectos de los fármacos , Paniculitis/inducido químicamente , Fenoles/toxicidad , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Adipogénesis/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Interferón gamma/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Paniculitis/metabolismo , Paniculitis/patología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal
18.
PLoS One ; 14(9): e0214829, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31490929

RESUMEN

Tamoxifen is a mixed agonist/antagonist estrogen analogue that is frequently used to induce conditional gene deletion in mice using Cre-loxP mediated gene recombination. Tamoxifen is routinely employed in extremely high-doses relative to typical human doses to induce efficient gene deletion in mice. Although tamoxifen has been widely assumed to have no influence upon ß-cells, the acute developmental and functional consequences of high-dose tamoxifen upon glucose homeostasis and adult ß-cells are largely unknown. We tested if tamoxifen influences glucose homeostasis in male mice of various genetic backgrounds. We then carried out detailed histomorphometry studies of mouse pancreata. We also performed gene expression studies with islets of tamoxifen-treated mice and controls. Tamoxifen had modest effects upon glucose homeostasis of mixed genetic background (F1 B6129SF1/J) mice, with fasting hyperglycemia and improved glucose tolerance but without overt effects on fed glucose levels or insulin sensitivity. Tamoxifen inhibited proliferation of ß-cells in a dose-dependent manner, with dramatic reductions in ß-cell turnover at the highest dose (decreased by 66%). In sharp contrast, tamoxifen did not reduce proliferation of pancreatic acinar cells. ß-cell proliferation was unchanged by tamoxifen in 129S2 mice but was reduced in C57Bl6 genetic background mice (decreased by 59%). Gene expression studies revealed suppression of RNA for cyclins D1 and D2 within islets of tamoxifen-treated mice. Tamoxifen has a cytostatic effect on ß-cells, independent of changes in glucose homeostasis, in mixed genetic background and also in C57Bl6 mice. Tamoxifen should be used judiciously to inducibly inactivate genes in studies of glucose homeostasis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Tamoxifeno/farmacología , Células Acinares/efectos de los fármacos , Células Acinares/fisiología , Animales , Células Cultivadas , Ciclina D/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
19.
Endocrinology ; 160(7): 1645-1658, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31107528

RESUMEN

The immune system plays a critical role in white adipose tissue (WAT) energy homeostasis and, by extension, whole-body metabolism. Substantial evidence from mouse and human studies firmly establishes that insulin sensitivity deteriorates as a result of subclinical inflammation in the adipose tissue of individuals with diabetes. However, the relationship between adipose tissue expandability and immune cell infiltration remains a complex problem important for understanding the pathogenesis of obesity. Notably, a large body of work challenges the idea that all immune responses are deleterious to WAT function. This review highlights recent advances that describe how immune cells and adipocytes coordinately enable WAT expansion and regulation of energy homeostasis.


Asunto(s)
Adipocitos Blancos/inmunología , Tejido Adiposo Blanco/inmunología , Metabolismo Energético/inmunología , Sistema Inmunológico/inmunología , Obesidad/inmunología , Animales , Inflamación/inmunología , Resistencia a la Insulina/fisiología
20.
Front Physiol ; 10: 1638, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038305

RESUMEN

Overnutrition and sedentary activity reinforce the growing trend of worldwide obesity, insulin resistance, and type 2 diabetes. However, we have limited insight into how food intake generates sophisticated metabolic perturbations associated with obesity. Accumulation of mitochondrial oxidative stress contributes to the metabolic changes in obesity, but the mechanisms and significance are unclear. In white adipose tissue (WAT), mitochondrial oxidative stress, and the generation of reactive oxygen species (ROS) impact the endocrine and metabolic function of fat cells. The central role of mitochondria in nutrient handling suggests pharmacological targeting of pathological oxidative stress likely improves the metabolic profile of obesity. This review will summarize the critical pathogenic mechanisms of obesity-driven oxidative stress in WAT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...