Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncogene ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164522

RESUMEN

Metastasis is responsible for the majority of cancer-related fatalities. We previously identified specific cancer cell populations responsible for metastatic events which are cytokeratin-14 (CK14) and E-cadherin positive in luminal tumors, and E-cadherin and vimentin positive in triple-negative tumors. Since cancer cells evolve within a complex ecosystem comprised of immune cells and stromal cells, we sought to decipher the spatial interactions of these aggressive cancer cell populations within the tumor microenvironment (TME). We used imaging mass cytometry to detect 36 proteins in tumor microarrays containing paired primary and metastatic lesions from luminal or triple-negative breast cancers (TNBC), resulting in a dataset of 1,477,337 annotated cells. Focusing on metastasis-initiating cell populations, we observed close proximity to specific fibroblast and macrophage subtypes, a relationship maintained between primary and metastatic tumors. Notably, high CK14 in luminal cancer cells and high vimentin in TNBC cells correlated with close proximity to specific macrophage subtypes (CD163intCD206intPDL1intHLA-DR+ or PDL1highARG1high). Our in-depth spatial analysis demonstrates that metastasis-initiating cancer cells consistently colocalizes with distinct cell populations within the TME, suggesting a role for these cell-cell interactions in promoting metastasis.

2.
JCI Insight ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106104

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and resistant to immunotherapy. Although immune recognition can be enhanced with immunomodulatory agents including checkpoint inhibitors and vaccines, few patients experience clinical efficacy because the tumor immune microenvironment (TiME) is dominated by immunosuppressive myeloid cells that impose T cell inhibition. Inhibition of phosphodiesterase-5 (PDE5) was reported to downregulate metabolic regulators arginase and iNOS in immunosuppressive myeloid cells and enhance immunity against immune-sensitive tumors including head and neck cancers. We show for the first time that combining a PDE5 inhibitor, tadalafil, with a mesothelin-specific vaccine, anti-PD1, and anti-CTLA4 yields antitumor efficacy even against immune-resistant PDAC. To determine immunologic advantages conferred by tadalafil, we profiled the TiME using mass cytometry and single-cell RNA analysis with Domino to infer intercellular signaling. Our analyses demonstrated that tadalafil reprograms myeloid cells to be less immunosuppressive. Moreover, tadalafil synergized with the vaccine, enhancing T cell activation including mesothelin-specific T cells. Tadalafil treatment was also associated with myeloid-T cell signaling axes important for antitumor responses (e.g., Cxcr3, Il12). Our study shows that PDE5 inhibition combined with vaccine-based immunotherapy promotes pro-inflammatory states of myeloid cells, activation of T cells, and enhanced myeloid-T cell crosstalk to yield antitumor efficacy against immune-resistant PDAC.

3.
Cell Rep Med ; 5(2): 101397, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38307029

RESUMEN

Microbes are an integral component of the tumor microenvironment. However, determinants of microbial presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune cell heterogeneity are spatially coupled. Mouse models of pancreatic cancer recapitulate the immune-microbial spatial coupling seen in humans. Distinct intra-tumoral niches are defined by T cells, with T cell-enriched and T cell-poor regions displaying unique bacterial communities that are associated with immunologically active and quiescent phenotypes, respectively, but are independent of the gut microbiome. Depletion of intra-tumoral bacteria slows tumor growth in T cell-poor tumors and alters the phenotype and presence of myeloid and B cells in T cell-enriched tumors but does not affect T cell infiltration. In contrast, T cell depletion disrupts the immunological state of tumors and reduces intra-tumoral bacteria. Our results establish a coupling between microbes and T cells in cancer wherein spatially defined immune-microbial communities differentially influence tumor biology.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias Pancreáticas , Ratones , Animales , Humanos , Linfocitos T/patología , Neoplasias Pancreáticas/patología , Comunicación Celular , Microambiente Tumoral
4.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961529

RESUMEN

The addition of anti-VEGF antibody treatment to immune checkpoint blockade (ICB) has increased the efficacy of immunotherapy in advanced hepatocellular carcinoma (HCC). Despite an initial promise, adding multitargeted kinase inhibitors of VEGFR with ICB has failed to increase survival in HCC. To reveal the mechanisms underlying treatment failure, we studied the effects of cabozantinib/ICB using orthotopic murine HCC models with or without liver damage. We monitored tumor growth and liver function, recorded survival outcomes, and performed immune profiling studies for intra-tumoral and surrounding liver. Cabozantinib/ICB treatment led to tumor regression and significantly improved survival in mice with normal livers. However, consistent with the clinical findings, combination therapy failed to show survival benefits despite similar tumor control when tested in the same models but in mice with liver fibrosis. Moreover, preclinical and clinical data converged, showing that activating immune responses by cabozantinib/ICB treatment induced hepatoxicity. Immune profiling revealed that combination therapy effectively reprogrammed the tumor immune microenvironment and increased NK cell infiltration and activation in the damaged liver tissue. Surprisingly, systemic depletion of NK reduced hepatotoxicity elicited by the combination therapy without compromising its anti-cancer effect, and significantly enhanced the survival benefit even in mice with HCC and underlying liver fibrosis. These findings demonstrate that preventing NK activation allowed for maintaining a favorable therapeutic ratio when combining ICB with cabozantinib in advanced HCC models.

5.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37904980

RESUMEN

Neoadjuvant immunotherapy is thought to produce long-term remissions through induction of antitumor immune responses before removal of the primary tumor. Tertiary lymphoid structures (TLS), germinal center-like structures that can arise within tumors, may contribute to the establishment of immunological memory in this setting, but understanding of their role remains limited. Here, we investigated the contribution of TLS to antitumor immunity in hepatocellular carcinoma (HCC) treated with neoadjuvant immunotherapy. We found that neoadjuvant immunotherapy induced the formation of TLS, which were associated with superior pathologic response, improved relapse free survival, and expansion of the intratumoral T and B cell repertoire. While TLS in viable tumor displayed a highly active mature morphology, in areas of tumor regression we identified an involuted TLS morphology, which was characterized by dispersion of the B cell follicle and persistence of a T cell zone enriched for ongoing antigen presentation and T cell-mature dendritic cell interactions. Involuted TLS showed increased expression of T cell memory markers and expansion of CD8+ cytotoxic and tissue resident memory clonotypes. Collectively, these data reveal the circumstances of TLS dissolution and suggest a functional role for late-stage TLS as sites of T cell memory formation after elimination of viable tumor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA