Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Materials (Basel) ; 17(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38473633

The structure, composition and corrosion properties of thin films synthesized using the Pulsed Laser Deposition (PLD) technique starting from a three high entropy alloy (HEA) AlCoCrFeNix produced by vacuum arc remelting (VAR) method were investigated. The depositions were performed at room temperature on Si and mirror-like polished Ti substrates either under residual vacuum (low 10-7 mbar, films denoted HEA2, HEA6, and HEA10, which were grown from targets with Ni concentration molar ratio, x, equal to 0.4, 1.2, and 2.0, respectively) or under N2 (10-4 mbar, films denoted HEN2, HEN6, and HEN10 for the same Ni concentration molar ratios). The deposited films' structures, investigated using Grazing Incidence X-ray Diffraction, showed the presence of face-centered cubic and body-centered cubic phases, while their surface morphology, investigated using scanning electron microscopy, exhibited a smooth surface with micrometer size droplets. The mass density and thickness were obtained from simulations of acquired X-ray reflectivity curves. The films' elemental composition, estimated using the energy dispersion X-ray spectroscopy, was quite close to that of the targets used. X-ray Photoelectron Spectroscopy investigation showed that films deposited under a N2 atmosphere contained several percentages of N atoms in metallic nitride compounds. The electrochemical behavior of films under simulated body fluid (SBF) conditions was investigated by Open Circuit Potential (OCP) and Electrochemical Impedance Spectroscopy measurements. The measured OCP values increased over time, implying that a passive layer was formed on the surface of the films. It was observed that all films started to passivate in SBF solution, with the HEN6 film exhibiting the highest increase. The highest repassivation potential was exhibited by the same film, implying that it had the highest stability range of all analyzed films. Impedance measurements indicated high corrosion resistance values for HEA2, HEA6, and HEN6 samples. Much lower resistances were found for HEN10 and HEN2. Overall, HEN6 films exhibited the best corrosion behavior among the investigated films. It was noticed that for 24 h of immersion in SBF solution, this film was also a physical barrier to the corrosion process, not only a chemical one.

2.
Sensors (Basel) ; 23(4)2023 Feb 04.
Article En | MEDLINE | ID: mdl-36850358

In this study we analyzed the structure and light-sensing properties of as-deposited vanadium oxide thin films, prepared by RF sputtering in different Ar:O2 flow rate conditions, at low temperature (e.g., 65 °C). X-ray diffraction (XRD), Scanning Electron Microscopy (SEM-EDX), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were employed to analyze the film microstructure, composition and the oxidation states of vanadium ions. The SEM micrographs evidence VxOy films with smooth surfaces, whereas the XRD patterns show their amorphous structure. Raman spectra indicate an increased structural disorder in the films deposited in Ar:O2 flow comparatively with those deposited solely in Ar flow. The XPS data suggest the modification of the oxidation state from V4+ to V5+, thus proving the formation of the V2O5 phase when increasing the oxygen content, which further affects the films' optical properties. We observed a good stability of the photogenerated current in Si/SiO2/VxOy/TiN heterostructures upon excitation with pulses of UV (360 nm), VIS (white light) and NIR (860 nm) light. The responsivity, detectivity and linear dynamic range parameters increase with the O/V ratio in the VxOy films, reaching comparable values with photodetectors based on crystalline V2O5 or VO2.

3.
Gels ; 8(10)2022 Sep 21.
Article En | MEDLINE | ID: mdl-36286105

The study and discovery of bioactive compounds and new formulations as potential tools for promoting the repair of dermoepidermal tissue in wound healing is of continuing interest. We have developed a new formulation of amorphous hydrogel based on sodium alginate (NaAlg); type I collagen, isolated by the authors from silver carp tails (COL); glycerol (Gli); Aloe vera gel powder (AV); and silver nanoparticles obtained by green synthesis with aqueous Cinnamomum verum extract (AgNPs@CIN) and vitamin C, respectively. The gel texture of the amorphous hydrogels was achieved by the addition of Aloe vera, demonstrated by a rheological analysis. The evaluations of the cytotoxicity and cell proliferation capacity of the experimental amorphous hydrogels were performed against human foreskin fibroblast Hs27 cells (CRL-1634-ATCC). The developed gel formulations did not show a cytotoxic effect. The hydrogel variant containing AgNPs@CIN in a concentration of 8 µg Ag/gel formulation and hydrogel variant with vitamin C had proliferative activity. In addition, the antibacterial activity of the hydrogels was evaluated against S. aureus ATCC 6538, Ps. aeruginosa ATCC 27853, and E. coli ATCC 25922. The results demonstrated that the gel variant based on AgNPs@CIN in a concentration of 95 µg Ag/gel formulation and the hydrogel based on vitamin C show antibacterial activity. Therefore, the developed hydrogels with AgNPs@CIN and vitamin C could be promising alternatives in wound healing.

4.
Materials (Basel) ; 15(4)2022 Feb 15.
Article En | MEDLINE | ID: mdl-35207970

One of the strategies employed to increase the sensitivity of the fluorescence-based biosensors is to deposit chromophores on plasmonic metasurfaces which are periodic arrays of resonating nano-antennas that allow the control of the electromagnetic field leading to fluorescence enhancement. While artificially engineered metasurfaces realized by micro/nano-fabrication techniques lead to a precise tailoring of the excitation field and resonant cavity properties, the technological overhead, small areas, and high manufacturing cost renders them unsuitable for mass production. A method to circumvent these challenges is to use random distribution of metallic nanoparticles sustaining plasmonic resonances, which present the properties required to significantly enhance the fluorescence. We investigate metasurfaces composed of random aggregates of metal nanoparticles deposited on a silicon and glass substrates. The finite difference time domain simulations of the interaction of the incident electromagnetic wave with the structures reveals a significant enhancement of the excitation field, which is due to the resonant plasmonic modes sustained by the nanoparticles aggregates. We experimentally investigated the role of these structures in the fluorescent behaviour of Rhodamine 6G dispersed in polymethylmethacrylate finding an enhancement that is 423-fold. This suggests that nanoparticle aggregates have the potential to constitute a suitable platform for low-cost, mass-produced fluorescent biosensors.

5.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 14.
Article En | MEDLINE | ID: mdl-35056158

The present work reveals a comprehensive decontamination study on real and simulated biological and chemical warfare agents (BCWA). The emphasis was on evaluating the antimicrobial activity against real biological warfare agents, such as Bacillus anthracis, and also the capacity of neutralizing real chemical warfare agents, such as mustard gas or soman, by employing three different types of organic solutions enriched with ZnO, TiO2, and zeolite nanoparticles, specially designed for decontamination applications. The capacity of decontaminating BCWA was evaluated through specific investigation tools, including surface monitoring with the swabs method, minimum inhibitory (MIC) and minimum bactericidal concentration (MBC) evaluations, time-kill tests for microorganisms, and GC-MS for monitoring chemical agents on different types of surfaces (glass, painted metal, rubber, and cotton butyl rubber). These tests revealed high decontamination factors for BCWA even after only 10 min, accomplishing the requirements imposed by NATO standards. At the completion of the decontamination process, the formulations reached 100% efficacy for Bacillus anthracis after 10-15 min, for soman after 20-30 min, and for mustard gas in an interval comprised between 5 and 24 h depending on the type of surface analyzed.

6.
J Mater Sci Mater Electron ; 33(25): 19998-20011, 2022.
Article En | MEDLINE | ID: mdl-38625349

Recently the emissions of volatile organic compounds (VOCs) in the atmosphere have increased dramatically with rapid development of urbanization and industry. This led to a large decline in air quality around the world, which resulted in a heavy impact on human health. Therefore, new/cheap detection devices for VOCs are of high interest. Formaldehyde (FA) is a very toxic VOC, which damages the respiratory system even in the smallest doses and short exposure time. Zinc oxide (ZnO)/nickel oxide (NiO) heterostructures were synthesized using an economical route: firstly, NiO was prepared by liquid exfoliation technique and deposited by dip-coating on alumina ceramic transducers with two interdigital gold (Au) electrodes, followed by low-temperature hydrothermal growth of ZnO. The as-prepared sensors were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM-EDAX), and X-Ray fluorescence (XRF). The response/recovery of ZnO/NiO heterostructure-based microsensors for formaldehyde was investigated at room temperature, in agreement with modern sensing requirements. The sensor operating voltage was varied between 1.5 and 5.0 V direct current (DC), to achieve the best sensor performance.

7.
Biophys Chem ; 279: 106691, 2021 12.
Article En | MEDLINE | ID: mdl-34600311

Surface plasmon resonance (SPR) is a label-free, real-time bio-sensing technique with high potential in the diagnostic area, especially when a signal amplification strategy is used to improve the detection limit. We report here a simple method for enhancing the detection limit of bovine serum albumin (BSA), by attaching gold nanorods (AuNRs). AuNRs were obtained by a seedless synthesis technique and characterized using scanning electron microscopy (SEM), UV-VIS spectroscopy, FT-IR spectroscopy and dynamic light scattering (DLS). Finite element method (FEM) simulations were employed to explore the enhancement of the SPR signal by adding AuNRs on the SPR sensor's metallic layer. SPR spectroscopy was used to analyze the changes in the refractive index brought by the immobilization of unconjugated BSA and BSA modified with AuNRs. The results confirmed that the AuNRs conjugated with the protein increase the SPR signal ~ 10 times, leading to a limit of detection of 1.081 × 10-8 M (0.713 µg/mL).


Biosensing Techniques , Nanotubes , Biosensing Techniques/methods , Gold/chemistry , Nanotubes/chemistry , Serum Albumin, Bovine/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Plasmon Resonance
8.
Materials (Basel) ; 14(11)2021 May 21.
Article En | MEDLINE | ID: mdl-34063918

This paper presents the relative humidity (RH) sensing response of a resistive sensor employing sensing layers based on a ternary nanocomposite comprising graphene oxide-oxidized carbon nanohorns-polyvinylpyrrolidone (GO-CNHox-PVP), at 1/1/1, 1/2/1, and 1/3/1 w/w/w mass ratios. The sensing structure is composed of a silicon substrate, a SiO2 layer, and interdigitated transducers (IDT) electrodes, on which the sensing layer is deposited via the drop-casting method. The morphology and the composition of the sensing layers are investigated through scanning electron microscopy (SEM) and RAMAN spectroscopy. The RH sensing capability of each carbonaceous nanocomposite-based thin film was analyzed by applying a current between the two electrodes and by measuring the voltage difference when varying the RH from 0% to 100% in humid nitrogen. The sensors have a room temperature response comparable to that of a commercial humidity sensor and are characterized by a rapid response, excellent linearity, good sensitivity, and recovery time. The manufactured sensing devices' transfer functions were established, and we extracted the response and recovery times. While the structures with GO/CNHox/PVP at 1/1/1 ratio (w/w/w) had the best performance in terms of relative sensibility, response time, and recovery time, the sensors employing the GO/CNHox/PVP nanocomposite at the 1/2/1 ratio (w/w/w) had the best linearity. Moreover, the ternary mixture proved to have much better sensing properties compared to CNHox and CNHox-PVP-based sensing layers in terms of sensitivity and linearity. Each component of the ternary nanocomposites' functional role is explained based on their physical and chemical properties. We analyzed the potential mechanism associated with the sensors' response; among these, the effect of the p-type semiconductor behavior of CNHox and GO, correlated with swelling of the PVP, was dominant and led to increased resistance of the sensing layer.

9.
Sensors (Basel) ; 21(5)2021 Mar 05.
Article En | MEDLINE | ID: mdl-33807640

Developing a sensing layer with high electroactive properties is an important aspect for proper functionality of a wearable sensor. The polymeric nanocomposite material obtained by a simple electropolymerization on gold interdigitated electrodes (IDEs) can be optimized to have suitable conductive properties to be used with direct current (DC) measurements. A new layer based on polyaniline:poly(4-styrenesulfonate) (PANI:PSS)/single-walled carbon nanotubes (SWCNT)/ferrocene (Fc) was electrosynthesized and deposed on interdigital transducers (IDT) and was characterized in detail using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), and X-ray diffraction (XRD). The sensor characteristics of the material towards carbon monoxide (CO) in the concentration range of 10-300 ppm were examined, showing a minimal relative humidity interference of only 1% and an increase of sensitivity with the increase of CO concentration. Humidity interference could be controlled by the number of CV cycles when a compact layer was formed and the addition of Fc played an important role in the decrease of humidity. The results for CO detection can be substantially improved by optimizing the number of deposition cycles and enhancing the Fc concentration. The material was developed for selective detection of CO in real environmental conditions and shows good potential for use in a wearable sensor.


Nanotubes, Carbon , Wearable Electronic Devices , Electrodes , Gold , Metallocenes
10.
Nanomaterials (Basel) ; 10(11)2020 Nov 23.
Article En | MEDLINE | ID: mdl-33238541

We report a simple, scalable route to wafer-size processing for fabrication of tunable nanoporous gold (NPG) by the anodization process at low constant current in a solution of hydrofluoric acid and dimethylformamide. Microstructural, optical, and electrochemical investigations were employed for a systematic analysis of the sample porosity evolution while increasing the anodization duration, namely the small angle X-ray scattering (SAXS) technique and electrochemical impedance spectroscopy (EIS). Whereas the SAXS analysis practically completes the scanning electronic microscopy (SEM) investigations and provides data about the impact of the etching time on the nanoporous gold layers in terms of fractal dimension and average pore surface area, the EIS analysis was used to estimate the electroactive area, the associated roughness factor, as well as the heterogeneous electron transfer rate constant. The bridge between the analyses is made by the scanning electrochemical microscopy (SECM) survey, which practically correlates the surface morphology with the electrochemical activity. The results were correlated to endorse the control over the gold film nanostructuration process deposited directly on the substrate that can be further subjected to different technological processes, retaining its properties. The results show that the anodization duration influences the surface area, which subsequently modifies the properties of NPG, thus enabling tuning the samples for specific applications, either optical or chemical.

...