Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907032

RESUMEN

Dynamin 1 mediates fission of endocytic synaptic vesicles in the brain and has two major splice variants, Dyn1xA and Dyn1xB, which are nearly identical apart from the extended C-terminal region of Dyn1xA. Despite a similar set of binding partners, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that Dyn1xA achieves this localization by preferentially binding to Endophilin A1 through a newly defined binding site within its long C-terminal tail extension. Endophilin A1 binds this site at higher affinity than the previously reported site, and the affinity is determined by amino acids within the Dyn1xA tail but outside the binding site. This interaction is regulated by the phosphorylation state of two serine residues specific to the Dyn1xA variant. Dyn1xA and Endophilin A1 colocalize in patches near the active zone, and mutations disrupting Endophilin A binding to the long tail cause Dyn1xA mislocalization and stalled endocytic pits on the plasma membrane during ultrafast endocytosis. Together, these data suggest that the specificity for ultrafast endocytosis is defined by the phosphorylation-regulated interaction of Endophilin A1 with the C-terminal extension of Dyn1xA.

2.
bioRxiv ; 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790502

RESUMEN

Dynamin 1 (Dyn1) has two major splice variants, xA and xB, with unique C-terminal extensions of 20 and 7 amino acids, respectively. Of these, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that the long tail variant, Dyn1xA, achieves this localization by preferentially binding to Endophilin A through a newly defined Class II binding site overlapping with its extension, at a site spanning the splice boundary. Endophilin binds this site at higher affinity than the previously reported site, and this affinity is determined by amino acids outside the binding sites acting as long distance elements within the xA tail. Their interaction is regulated by the phosphorylation state of two serine residues specific to the xA variant. Dyn1xA and Endophilin colocalize in patches near the active zone of synapses. Mutations selectively disrupting Endophilin binding to the long extension cause Dyn1xA mislocalization along axons. In these mutants, endocytic pits are stalled on the plasma membrane during ultrafast endocytosis. These data suggest that the specificity for ultrafast endocytosis is defined by the phospho-regulated interaction of Endophilin A through a newly identified site of Dyn1xA's long tail.

3.
Proc Natl Acad Sci U S A ; 111(13): 5036-41, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24707050

RESUMEN

The pattern of neurodegeneration in Alzheimer's disease (AD) is very distinctive: neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau selectively affect pyramidal neurons of the aging association cortex that interconnect extensively through glutamate synapses on dendritic spines. In contrast, primary sensory cortices have few NFTs, even in late-stage disease. Understanding this selective vulnerability, and why advancing age is such a high risk factor for the degenerative process, may help to reveal disease etiology and provide targets for intervention. Our study has revealed age-related increase in cAMP-dependent protein kinase (PKA) phosphorylation of tau at serine 214 (pS214-tau) in monkey dorsolateral prefrontal association cortex (dlPFC), which specifically targets spine synapses and the Ca(2+)-storing spine apparatus. This increase is mirrored by loss of phosphodiesterase 4A from the spine apparatus, consistent with increase in cAMP-Ca(2+) signaling in aging spines. Phosphorylated tau was not detected in primary visual cortex, similar to the pattern observed in AD. We also report electron microscopic evidence of previously unidentified vesicular trafficking of phosphorylated tau in normal association cortex--in axons in young dlPFC vs. in spines in aged dlPFC--consistent with the transneuronal lesion spread reported in genetic rodent models. pS214-Tau was not observed in normal aged mice, suggesting that it arises with the evolutionary expansion of corticocortical connections in primates, crossing the threshold into NFTs and degeneration in humans. Thus, the cAMP-Ca(2+) signaling mechanisms, needed for flexibly modulating network strength in young association cortex, confer vulnerability to degeneration when dysregulated with advancing age.


Asunto(s)
Envejecimiento/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Corteza Prefrontal/enzimología , Corteza Prefrontal/patología , Proteínas tau/metabolismo , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Macaca mulatta , Ratones , Modelos Biológicos , Fosforilación , Transporte de Proteínas , Vesículas Transportadoras/metabolismo
4.
Methods ; 61(3): 186-218, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23623823

RESUMEN

The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.


Asunto(s)
Sistema Nervioso Central/química , Trastornos Mentales/metabolismo , Proteínas del Tejido Nervioso/química , Enfermedades Neurodegenerativas/metabolismo , Neuropéptidos/química , Proteómica/métodos , Animales , Sistema Nervioso Central/fisiología , Cromatografía Liquida/instrumentación , Cromatografía Liquida/métodos , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica , Humanos , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Trastornos Mentales/genética , Trastornos Mentales/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/aislamiento & purificación , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/clasificación , Neuronas/metabolismo , Neuronas/fisiología , Neuropéptidos/genética , Neuropéptidos/aislamiento & purificación , Neuropéptidos/metabolismo , Proteómica/instrumentación , Proyectos de Investigación
5.
J Proteome Res ; 10(6): 2725-33, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21500857

RESUMEN

Protein phosphorylation and glycosylation are the most common post-translational modifications observed in biology, frequently on the same protein. Assembly protein AP180 is a synapse-specific phosphoprotein and O-linked beta-N-acetylglucosamine (O-GlcNAc) modified glycoprotein. AP180 is involved in the assembly of clathrin coated vesicles in synaptic vesicle endocytosis. Unlike other types of O-glycosylation, O-GlcNAc is nucleocytoplasmic and reversible. It was thought to be a terminal modification, that is, the O-GlcNAc was not found to be additionally modified in any way. We now show that AP180 purified from rat brain contains a phosphorylated O-GlcNAc (O-GlcNAc-P) within a highly conserved sequence. O-GlcNAc or O-GlcNAc-P, but not phosphorylation alone, was found at Thr-310. Analysis of synthetic GlcNAc-6-P produced identical fragmentation products to GlcNAc-P from AP180. Direct O-linkage of GlcNAc-P to a Thr residue was confirmed by electron transfer dissociation MS. A second AP180 tryptic peptide was also glycosyl phosphorylated, but the site of modification was not assigned. Sequence similarities suggest there may be a common motif within AP180 involving glycosyl phosphorylation and dual flanking phosphorylation sites within 4 amino acid residues. This novel type of protein glycosyl phosphorylation adds a new signaling mechanism to the regulation of neurotransmission and more complexity to the study of O-GlcNAc modification.


Asunto(s)
Acetilglucosamina/metabolismo , Procesamiento Proteico-Postraduccional , Fosfatos de Azúcar/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Datos de Secuencia Molecular , Proteínas de Ensamble de Clatrina Monoméricas/química , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Fragmentos de Péptidos/química , Fosforilación , Ratas , Espectrometría de Masas en Tándem
6.
Mol Cell Proteomics ; 7(6): 1146-61, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18344231

RESUMEN

Amphiphysin I (amphI) is dephosphorylated by calcineurin during nerve terminal depolarization and synaptic vesicle endocytosis (SVE). Some amphI phosphorylation sites (phosphosites) have been identified with in vitro studies or phosphoproteomics screens. We used a multifaceted strategy including 32P tracking to identify all in vivo amphI phosphosites and determine their relative abundance and potential relevance to SVE. AmphI was extracted from 32P-labeled synaptosomes, phosphopeptides were isolated from proteolytic digests using TiO2 chromatography, and mass spectrometry revealed 13 sites: serines 250, 252, 262, 268, 272, 276, 285, 293, 496, 514, 539, and 626 and Thr-310. These were distributed into two clusters around the proline-rich domain and the C-terminal Src homology 3 domain. Hierarchical phosphorylation of Ser-262 preceded phosphorylation of Ser-268, -272, -276, and -285. Off-line HPLC separation and two-dimensional tryptic mapping of 32P-labeled amphI revealed that Thr-310, Ser-293, Ser-285, Ser-272, Ser-276, and Ser-268 contained the highest 32P incorporation and were the most stimulus-sensitive. Individually Thr-310 and Ser-293 were the most abundant phosphosites, incorporating 16 and 23% of the 32P. The multiple phosphopeptides containing Ser-268, Ser-276, Ser-272, and Ser-285 had 27% of the 32P. Evidence for a role for at least one proline-directed protein kinase and one non-proline-directed kinase was obtained. Four phosphosites predicted for non-proline-directed kinases, Ser-626, -250, -252, and -539, contained low amounts of 32P and were not depolarization-responsive. At least one alternatively spliced amphI isoform was identified in synaptosomes as being constitutively phosphorylated because it did not incorporate 32P during the 1-h labeling period. Multiple phosphosites from amphI-co-migrating synaptosomal proteins were also identified, including SGIP (Src homology 3 domain growth factor receptor-bound 2 (Grb2)-like (endophilin)-interacting protein 1), AAK1, eps15R, MAP6, alpha/beta-adducin, and HCN1. The results reveal two sets of amphI phosphosites that are either dynamically turning over or constitutively phosphorylated in nerve terminals and improve understanding of the role of individual amphI sites or phosphosite clusters in synaptic SVE.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/química , Neuronas/metabolismo , Animales , Sitios de Unión , Cromatografía en Capa Delgada/métodos , Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Fosforilación , Prolina/química , Isoformas de Proteínas , Estructura Terciaria de Proteína , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Titanio/química
7.
Med Sci Law ; 47(2): 134-40, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17520958

RESUMEN

Proteomics is the analysis of the protein complement of the genome. The technique involves extracting proteins from the tissue being examined; separating the proteins using methods such as two-dimensional gel electrophoresis and then identifying the proteins by mass spectrometry. This paper describes the application of proteomics to incised wounds of the rat to determine if this technology could be applied to the important forensic issue of determining the age of wounds. Experimental incised skin wounds were inflicted on rats 5, 15, 30 and 60 minutes, 3, 6, 12 and 24 hours and 2, 5, 7 and 12 days before euthanasia. Each wound was excised and frozen at 80 degrees C; protein extracts were prepared and subjected to two-dimensional polyacrylamide gel electrophoresis over the range pH 3 to pH 10. Protein spots were identified using Matrix-assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF) mass spectrometry. A number of proteins were identified in skin wounds. After wounding the most prominent change was in the level of haemoglobin, which was elevated in wounds five minutes old and remained elevated for three hours, falling to near control levels after 12 hours. This pilot study has illustrated the feasibility for proteomics to be applied to determining wound age.


Asunto(s)
Proteómica , Cicatrización de Heridas/fisiología , Animales , Masculino , Nueva Gales del Sur , Ratas , Ratas Wistar
8.
J Biol Chem ; 282(20): 14695-707, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17376771

RESUMEN

Dynamin I (dynI) is phosphorylated in synaptosomes at Ser(774) and Ser(778) by cyclin-dependent kinase 5 to regulate recruitment of syndapin I for synaptic vesicle endocytosis, and in PC12 cells on Ser(857). Hierarchical phosphorylation of Ser(774) precedes phosphorylation of Ser(778). In contrast, Thr(780) phosphorylation by cdk5 has been reported as the sole site (Tomizawa, K., Sunada, S., Lu, Y. F., Oda, Y., Kinuta, M., Ohshima, T., Saito, T., Wei, F. Y., Matsushita, M., Li, S. T., Tsutsui, K., Hisanaga, S. I., Mikoshiba, K., Takei, K., and Matsui, H. (2003) J. Cell Biol. 163, 813-824). To resolve the discrepancy and to better understand the biological roles of dynI phosphorylation, we undertook a systematic identification of all phosphorylation sites in rat brain nerve terminal dynI. Using phosphoamino acid analysis, exclusively phospho-serine residues were found. Thr(780) phosphorylation was not detectable. Mutation of Ser(774), Ser(778), and Thr(780) confirmed that Thr(780) phosphorylation is restricted to in vitro conditions. Mass spectrometry of (32)P-labeled phosphopeptides separated by two-dimensional mapping revealed seven in vivo phosphorylation sites: Ser(774), Ser(778), Ser(822), Ser(851), Ser(857), Ser(512), and Ser(347). Quantification of (32)P radiation in each phosphopeptide showed that Ser(774) and Ser(778) were the major sites (up to 69% of the total), followed by Ser(851) and Ser(857) (12%), and Ser(853) (2%). Phosphorylation of Ser(851) and Ser(857) was restricted to the long tail splice variant dynIxa and was not hierarchical. Co-purified, (32)P-labeled dynIII was phosphorylated at Ser(759), Ser(763), and Ser(853). Ser(853) is homologous to Ser(851) in dynIxa. The results identify all major and several minor phosphorylation sites in dynI and provide the first measure of their relative abundance and relative responses to depolarization. The multiple phospho-sites suggest subtle regulation of synaptic vesicle endocytosis by new protein kinases and new protein-protein interactions. The homologous dynI and dynIII phosphorylation indicates a high mechanistic similarity. The results suggest a unique role for the long splice variants of dynI and dynIII in nerve terminals.


Asunto(s)
Encéfalo/metabolismo , Dinamina I/metabolismo , Mutación Missense , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Quinasa 5 Dependiente de la Ciclina/metabolismo , Dinamina I/química , Dinamina I/genética , Endocitosis/genética , Células PC12 , Mapeo Peptídico , Fosforilación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Ratas , Sinaptosomas/metabolismo
9.
Ann N Y Acad Sci ; 1025: 14-26, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15542695

RESUMEN

Alcoholism results in changes in the human brain that reinforce the cycle of craving and dependency, and these changes are manifest in the pattern of expression of proteins in key cells and brain areas. Described here is a proteomics-based approach aimed at determining the identity of proteins in the superior frontal cortex (SFC) of the human brain that show different levels of expression in autopsy samples taken from healthy and long-term alcohol abuse subjects. Soluble protein fractions constituting pooled samples combined from SFC biopsies of four well-characterized chronic alcoholics (mean consumption > 80 g ethanol/day throughout adulthood) and four matched controls (<20 g/day) were generated. Two-dimensional electrophoresis was performed in triplicate on alcoholic and control samples and the resultant protein profiles analyzed for differential expression. Overall, 182 proteins differed by the criterion of twofold or more between case and control samples. Of these, 139 showed significantly lower expression in alcoholics, 35 showed significantly higher expression, and 8 were new or had disappeared. To date, 63 proteins have been identified using MALDI-MS and MS-MS. The finding that the expression level of differentially expressed proteins is preponderantly lower in the alcoholic brain is supported by recent results from parallel studies using microarray mRNA transcript.


Asunto(s)
Alcoholismo/genética , Alcoholismo/metabolismo , Encéfalo/metabolismo , Proteómica/métodos , Anciano , Alcoholismo/patología , Encéfalo/patología , Bases de Datos Genéticas , Electroforesis en Gel Bidimensional/métodos , Humanos , Masculino , Persona de Mediana Edad , Análisis por Matrices de Proteínas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...