Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Inflamm Res ; 72(4): 859-873, 2023 Apr.
Article En | MEDLINE | ID: mdl-36912916

INTRODUCTION: The role of suppressor of cytokine signaling 2 (SOCS2) in Aggregatibacter actinomycetemcomitans (Aa)-induced alveolar bone loss is unknown; thus, it was investigated in this study. METHODS: Alveolar bone loss was induced by infecting C57BL/6 wild-type (WT) and Socs2-knockout (Socs2-/-) mice with Aa. Bone parameters, bone loss, bone cell counts, the expression of bone remodeling markers, and cytokine profile were evaluated by microtomography, histology, qPCR, and/or ELISA. Bone marrow cells (BMC) from WT and Socs2-/- mice were differentiated in osteoblasts or osteoclasts for analysis of the expression of specific markers. RESULTS: Socs2-/- mice intrinsically exhibited irregular phenotypes in the maxillary bone and an increased number of osteoclasts. Upon Aa infection, SOCS2 deficiency resulted in the increased alveolar bone loss, despite decreased proinflammatory cytokine production, in comparison to the WT mice. In vitro, SOCS2 deficiency resulted in the increased osteoclasts formation, decreased expression of bone remodeling markers, and proinflammatory cytokines after Aa-LPS stimulus. CONCLUSIONS: Collectively, data suggest that SOCS2 is a regulator of Aa-induced alveolar bone loss by controlling the differentiation and activity of bone cells, and proinflammatory cytokines availability in the periodontal microenvironment and an important target for new therapeutic strategies. Thus, it can be helpful in preventing alveolar bone loss in periodontal inflammatory conditions.


Alveolar Bone Loss , Periodontal Diseases , Mice , Animals , Alveolar Bone Loss/genetics , Aggregatibacter actinomycetemcomitans/metabolism , Mice, Inbred C57BL , Periodontal Diseases/metabolism , Osteoclasts/metabolism , Cytokines/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism
2.
J Nutr Biochem ; 76: 108304, 2020 02.
Article En | MEDLINE | ID: mdl-31816561

INTRODUCTION: Obesity is usually triggered by a nutrient overload that favors adipocyte hypertrophy and increases the number of pro-inflammatory cells and mediators into adipose tissue. These mediators may be regulated by suppressors of cytokine signaling (SOCS), such as SOCS2, which is involved in the regulation of the inflammatory response of many diseases, but its role in obesity is not yet known. We aimed to investigate the role of SOCS2 in metabolic and inflammatory dysfunction induced by a high-refined carbohydrate-containing diet (HC). MATERIAL AND METHODS: Male C57BL/6 wild type (WT) and SOCS2 deficient (SOCS2-/-) mice were fed chow or an HC diet for 8 weeks. RESULTS: In general, SOCS2 deficient mice, independent of the diet, showed higher adipose tissue mass compared with their WT counterparts that were associated with decreased lipogenesis rate in adipose tissue, lipolysis in adipocyte culture and energy expenditure. An anti-inflammatory profile was observed in adipose tissue of SOCS2-/- by reduced secretion of cytokines, such as TNF and IL-6, and increased M2-like macrophages and regulatory T cells compared with WT mice. Also, SOCS2 deficiency reduced the differentiation/expansion of pro-inflammatory cells in the spleen but increased Th2 and Treg cells compared with their WT counterparts. CONCLUSION: The SOCS2 protein is an important modulator of obesity that regulates the metabolic pathways related to adipocyte size. Additionally, SOCS2 is an inflammatory regulator that appears to be essential for controlling the release of cytokines and the differentiation/recruitment of cells into adipose tissue during the development of obesity.


Adipose Tissue/metabolism , Inflammation , Obesity/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Blood Glucose/metabolism , Cytokines/metabolism , Glucose Tolerance Test , Insulin/metabolism , Insulin Resistance , Lipid Metabolism , Lipogenesis , Lipolysis , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen Consumption , Suppressor of Cytokine Signaling Proteins/genetics , T-Lymphocytes, Regulatory/cytology , Th2 Cells/cytology
...