Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cureus ; 14(6): e25979, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35855243

RESUMEN

Perioperative change to the autonomic nervous system (ANS) in spine surgery is an uncommon occurrence but has a wide range of possible presentations including blood pressure, heart rate, and heart rate variability changes collectively referred to as dysreflexia. Increased sympathetic tone and decreased vagal output are believed to be the underlying causes of these autonomic manifestations and pose an important question as to effective treatment of these dysfunctions. Spinal nerve root decompression has shown to be a valuable tool in normalizing autonomic tone by increasing parasympathetic output, most notably to the cardiovascular system, leading to the resolution of the aforementioned cardiovascular complications. Here we report a patient with elevated blood pressure with complaints of upper extremity paresthesias. MRI showed nerve root compression, and anterior cervical discectomy was performed. Post-operatively the patient had a decrease in both systolic and diastolic blood pressure which was maintained two months after surgery and allowed for discontinuation of one anti-hypertensive medication.

2.
Lab Invest ; 101(11): 1467-1474, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34504306

RESUMEN

The mortality rates among patients who initially survive sepsis are, in part, associated with a high risk of secondary lung infections and respiratory failure. Given that phagolysosomes are important for intracellular killing of pathogenic microbes, we investigated how severe lung infections associated with post-sepsis immunosuppression affect phagolysosome biogenesis. In mice with P. aeruginosa-induced pneumonia, we found a depletion of both phagosomes and lysosomes, as evidenced by decreased amounts of microtubule associated protein light chain 3-II (LC3-II) and lysosomal-associated membrane protein (LAMP1). We also found a loss of transcription factor E3 (TFE3) and transcription factor EB (TFEB), which are important activators for transcription of genes encoding autophagy and lysosomal proteins. These events were associated with increased expression of ZKSCAN3, a repressor for transcription of genes encoding autophagy and lysosomal proteins. Zkscan3-/- mice had increased expression of genes involved in the autophagy-lysosomal pathway along with enhanced killing of P. aeruginosa in the lungs, as compared to wild-type mice. These findings highlight the involvement of ZKSCAN3 in response to severe lung infection, including susceptibility to secondary bacterial infections due to immunosuppression.


Asunto(s)
Fagosomas/fisiología , Neumonía Bacteriana/complicaciones , Infecciones por Pseudomonas/complicaciones , Sepsis/inmunología , Factores de Transcripción/deficiencia , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Tolerancia Inmunológica , Pulmón/metabolismo , Masculino , Ratones Endogámicos C57BL , Neumonía Bacteriana/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Sepsis/microbiología
3.
Lab Invest ; 100(9): 1238-1251, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32350405

RESUMEN

The mechanisms which underlie defects in learning and memory are a major area of focus with the increasing incidence of Alzheimer's disease in the aging population. The complex genetically-controlled, age-, and environmentally-dependent onset and progression of the cognitive deficits and neuronal pathology call for better understanding of the fundamental biology of the nervous system function. In this study, we focus on nuclear receptor binding factor-2 (NRBF2) which modulates the transcriptional activities of retinoic acid receptor α and retinoid X receptor α, and the autophagic activities of the BECN1-VPS34 complex. Since both transcriptional regulation and autophagic function are important in supporting neuronal function, we hypothesized that NRBF2 deficiency may lead to cognitive deficits. To test this, we developed a new mouse model with nervous system-specific knockout of Nrbf2. In a series of behavioral assessment, we demonstrate that NRBF2 knockout in the nervous system results in profound learning and memory deficits. Interestingly, we did not find deficits in autophagic flux in primary neurons and the autophagy deficits were minimal in the brain. In contrast, RNAseq analyses have identified altered expression of genes that have been shown to impact neuronal function. The observation that NRBF2 is involved in learning and memory suggests a new mechanism regulating cognition involving the role of this protein in regulating networks related to the function of retinoic acid receptors, protein folding, and quality control.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Encéfalo/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Especificidad de Órganos/genética , Transactivadores/genética , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/fisiopatología , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Actividad Motora/genética , Actividad Motora/fisiología , Neuronas/citología , Neuronas/metabolismo , Transactivadores/metabolismo
4.
J Neurochem ; 144(6): 691-709, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29341130

RESUMEN

Parkinson's disease (PD) is a movement disorder with widespread neurodegeneration in the brain. Significant oxidative, reductive, metabolic, and proteotoxic alterations have been observed in PD postmortem brains. The alterations of mitochondrial function resulting in decreased bioenergetic health is important and needs to be further examined to help develop biomarkers for PD severity and prognosis. It is now becoming clear that multiple hits on metabolic and signaling pathways are likely to exacerbate PD pathogenesis. Indeed, data obtained from genetic and genome association studies have implicated interactive contributions of genes controlling protein quality control and metabolism. For example, loss of key proteins that are responsible for clearance of dysfunctional mitochondria through a process called mitophagy has been found to cause PD, and a significant proportion of genes associated with PD encode proteins involved in the autophagy-lysosomal pathway. In this review, we highlight the evidence for the targeting of mitochondria by proteotoxic, redox and metabolic stress, and the role autophagic surveillance in maintenance of mitochondrial quality. Furthermore, we summarize the role of α-synuclein, leucine-rich repeat kinase 2, and tau in modulating mitochondrial function and autophagy. Among the stressors that can overwhelm the mitochondrial quality control mechanisms, we will discuss 4-hydroxynonenal and nitric oxide. The impact of autophagy is context depend and as such can have both beneficial and detrimental effects. Furthermore, we highlight the potential of targeting mitochondria and autophagic function as an integrated therapeutic strategy and the emerging contribution of the microbiome to PD susceptibility.


Asunto(s)
Autofagia , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Estrés Fisiológico , Animales , Humanos , Lisosomas/metabolismo , Mitofagia , Estrés Oxidativo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...