Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202414609, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302658

RESUMEN

We describe the synthesis and characterization of a [2]rotaxane comprising a dibenzo-24-crown-8 (DB24C8) macrocyclic component and a thread containing three recognition sites: ammonium (AmH+), bipyridinium (Bpy2+) and triazolium (Trz+). AmH+ and Bpy2+ are responsive to fully orthogonal stimuli, pH and electrochemical, which allows to precisely control the directional translation of the macrocycle along the axle. A better understanding of the processes driving the operation of the system was obtained thanks to an in-depth thermodynamic characterization. Orthogonal stimuli responsive tristable rotaxanes represent the starting point for the creation of linear motors and the development of molecular logic gates.

2.
Chem Commun (Camb) ; 59(88): 13159-13162, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37849330

RESUMEN

We describe a rotaxane molecular shuttle encompassing triazolium and tertiary ammonium units as weak recognition sites for the ring. Such a design, which differs from that of typical controllable rotaxanes, allows the precise tuning of the ring distribution among the two sites - i.e., the coconformational equilibrium - by changing the solvent polarity or the nature of the counteranions. Shuttling of the ring between the two stations can also be toggled by acid-base stimuli. Such an approach is paradigmatic to obtain rotaxanes that can sense environmental changes and transduce them into a coconformational response and opens avenues for novel applications in sensing and stimuli-responsive materials.

3.
JACS Au ; 3(5): 1301-1313, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37234111

RESUMEN

Accurate control of long-range motion at the molecular scale holds great potential for the development of ground-breaking applications in energy storage and bionanotechnology. The past decade has seen tremendous development in this area, with a focus on the directional operation away from thermal equilibrium, giving rise to tailored man-made molecular motors. As light is a highly tunable, controllable, clean, and renewable source of energy, photochemical processes are appealing to activate molecular motors. Nonetheless, the successful operation of molecular motors fueled by light is a highly challenging task, which requires a judicious coupling of thermal and photoinduced reactions. In this paper, we focus on the key aspects of light-driven artificial molecular motors with the aid of recent examples. A critical assessment of the criteria for the design, operation, and technological potential of such systems is provided, along with a perspective view on future advances in this exciting research area.

4.
Chem Commun (Camb) ; 59(33): 4970-4973, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37016922

RESUMEN

We report the synthesis and characterisation of [2]rotaxanes based on a stilbazolium dye and a calix[6]arene macrocycle. Since both components are non-symmetric, two orientational isomers are obtained. The two isomers display distinct photophysical and photochemical properties in solution and solid state, superior to the unencapsulated dye.

5.
Chemistry ; 29(22): e202203472, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36929373

RESUMEN

We report the synthesis and characterization, by means of NMR and UV-visible spectroscopy and electrochemical techniques, of a dansyl calix[6]arene derivative and of its pseudorotaxane complex with a bipyridinium-based axle. This novel macrocycle shows remarkable complexation ability, in analogy with parent compounds, while the dansyl moieties impart valuable features to the system. Indeed, these units: i) signal the state of the system by fluorescence; ii) can be reversibly protonated, enabling the modulation of the complexation abilities of the macrocycle; iii) participate in photoinduced electron transfer processes, which may be exploited to tune the stability of the supramolecular complex. Therefore, in this multiresponsive pseudorotaxane, the threading and de-threading motions of the molecular components can be modulated either by protonation of the calixarene host or by reduction of the bipyridinium guest, which can be accomplished both by electrochemical reduction and via photoinduced electron transfer. Overall, three orthogonal and reversible stimuli can be used to induce molecular movements of the pseudorotaxane components.

6.
Angew Chem Int Ed Engl ; 62(5): e202214265, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36422473

RESUMEN

The ability to exploit energy autonomously is one of the hallmarks of life. Mastering such processes in artificial nanosystems can open technological opportunities. In the last decades, light- and chemically driven autonomous systems have been developed in relation to conformational motion and self-assembly, mostly in relation to molecular motors. In contrast, despite electrical energy being an attractive energy source to power nanosystems, its autonomous harnessing has received little attention. Herein we consider an operation mode that allows the autonomous exploitation of electrical energy by a self-assembling system. Threading and dethreading motions of a pseudorotaxane take place autonomously in solution, powered by the current flowing between the electrodes of a scanning electrochemical microscope. The underlying autonomous energy ratchet mechanism drives the self-assembly steps away from equilibrium with a higher energy efficiency compared to other autonomous systems. The strategy is general and might be extended to other redox-driven systems.

7.
Chem Commun (Camb) ; 58(80): 11236-11239, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-35968687

RESUMEN

First generation DASA derivatives can be reversibly isomerized from the coloured, open form to the colourless, closed isomer upon protonation, thus behaving as acidochromic compounds in halogenated organic solvent.

8.
Nat Nanotechnol ; 17(7): 746-751, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35760895

RESUMEN

Natural and artificial autonomous molecular machines operate by constantly dissipating energy coming from an external source to maintain a non-equilibrium state. Quantitative thermodynamic characterization of these dissipative states is highly challenging as they exist only as long as energy is provided. Here we report on the detailed physicochemical characterization of the dissipative operation of a supramolecular pump. The pump transduces light energy into chemical energy by bringing self-assembly reactions to non-equilibrium steady states. The composition of the system under light irradiation was followed in real time by 1H NMR for four different irradiation intensities. The experimental composition and photon flow were then fed into a theoretical model describing the non-equilibrium dissipation and the energy storage at the steady state. We quantitatively probed the relationship between the light energy input and the deviation of the dissipative state from thermodynamic equilibrium in this artificial system. Our results provide a testing ground for newly developed theoretical models for photoactivated artificial molecular machines operating away from thermodynamic equilibrium.


Asunto(s)
Modelos Teóricos , Cinética , Termodinámica
9.
J Am Chem Soc ; 144(23): 10180-10185, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35575701

RESUMEN

We describe a [2]rotaxane whose recognition sites for the ring are a dibenzylammonium moiety, endowed with acidic and H-bonding donor properties, and an imidazolium center bearing a photoactive phenylazo substituent. Light irradiation of this compound triggers a network of E/Z isomerization and proton transfer reactions that enable autonomous and reversible ring shuttling away from equilibrium.


Asunto(s)
Protones , Rotaxanos , Catálisis , Isomerismo
10.
Photochem Photobiol Sci ; 21(5): 825-833, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35034332

RESUMEN

Chemical actinometers are a useful tool in photochemistry, which allows to measure the photon flux of a light source to carry out quantitative analysis on photoreactions. The most commonly employed actinometers so far show minor drawbacks, such as difficult data treatment, parasite reactions, low stability or impossible reset. We propose herewith the use of 4,4'-dimethylazobenzene as a chemical actinometer. This compound undergoes a clean and efficient E/Z isomerization, approaching total conversion upon irradiation at 365 nm. Thanks to its properties, it can be used to determine the photon flux in the UV-visible region, with simple experimental methods and data treatment, and with the possibility to be reused after photochemical or thermal reset.


Asunto(s)
Fotones , Fotoquímica/métodos
11.
Energy Fuels ; 35(23): 18900-18914, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34887620

RESUMEN

The exploitation of sunlight as a clean, renewable, and distributed energy source is key to facing the energetic demand of modern society in a sustainable and affordable fashion. In the past few decades, chemists have learned to make molecular machines, that is, synthetic chemical systems in which energy inputs cause controlled movements of molecular components that could be used to perform a task. A variety of artificial molecular machines operated by light have been constructed by implementing photochemical processes within appropriately designed (supra)molecular assemblies. These studies could open up new routes for the realization of nanostructured devices and materials capable to harness, convert, and store light energy.

12.
Org Chem Front ; 8(19): 5531-5549, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34603737

RESUMEN

Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.

13.
Chem ; 7(8): 2137-2150, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34435161

RESUMEN

The mechanical bond has opened a new world for structural and dynamic stereochemistry, which is still largely underexplored and whose significance for various applications is becoming increasingly evident. We demonstrate that designed rearrangements involving both covalent and mechanical bonds can be integrated in [2]rotaxanes, leading to interesting consequences in terms of E/Z isomerization mechanisms. Two entirely distinct and concomitant stereomutations, pertaining to the same stereogenic element but involving different kinds of linkages within the molecule, are observed and are thoroughly characterized. The rate of the two processes is affected in opposite ways upon changing solvent polarity; such a phenomenon can be used to selectively modify the rate of each motion and adjust the relative contribution of the two mechanisms to the isomerization. Although the movements are not synchronized, an analysis of the intriguing fundamental implications for transition state theory, reaction pathway bifurcation, and microscopic reversibility was triggered by our experimental observations.

14.
J Am Chem Soc ; 143(29): 10890-10894, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34282901

RESUMEN

We describe the modular design of a pseudorotaxane-based supramolecular pump and its photochemically driven autonomous nonequilibrium operation in a dissipative regime. These properties derive from careful engineering of the energy maxima and minima along the threading coordinate and their light-triggered modulation. Unlike its precursor, this second-generation system is amenable to functionalization for integration into more complex devices.

15.
Chemistry ; 27(43): 11019-11020, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34180105

RESUMEN

Invited for the cover of this issue is Alberto Credi and co-workers at the University of Bologna and National Research Council, Bologna, Italy. The image represents the photostationary non-equilibrium operation of supramolecular pumps as a hydraulic circuit in which water flows between reservoirs. Read the full text of the article at 10.1002/chem.202101163.


Asunto(s)
Agua , Humanos
16.
Chem Sci ; 12(18): 6419-6428, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34084442

RESUMEN

Tris(phenylureido)calix[6]arene is endowed with unique properties that make it a valuable macrocyclic component for the synthesis of mechanically interlocked molecules. Its three-dimensional and intrinsically nonsymmetric structure is kinetically selective toward two processes: (i) in apolar media, the threading of bipyridinium based axle-like components takes place exclusively from the upper rim; (ii) SN2 alkylation reactions of a pyridylpyridinium precursor engulfed in the cavity occur selectively at pyridylpyridinium nitrogen atom located at the macrocycle upper rim (active template synthesis). Here we exploit such properties to prepare two series of [3]rotaxanes, each consisting of three sequence isomers that arise from the threading of two identical but nonsymmetric wheels on a symmetric thread differing only for the reciprocal orientation of the macrocycles. The features of the calix[6]arene and the active template synthetic approach, together with a careful selection of the precursors, enabled us to selectively synthesise the [3]rotaxane sequence isomers of each series with fast kinetics and high yields.

17.
Chemistry ; 27(43): 11076-11083, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-33951231

RESUMEN

The development of artificial nanoscale motors that can use energy from a source to perform tasks requires systems capable of performing directionally controlled molecular movements and operating away from chemical equilibrium. Here, the design, synthesis and properties of pseudorotaxanes are described, in which a photon input triggers the unidirectional motion of a macrocyclic ring with respect to a non-symmetric molecular axle. The photoinduced energy ratcheting at the basis of the pumping mechanism is validated by measuring the relevant thermodynamic and kinetic parameters. Owing to the photochemical behavior of the azobenzene moiety embedded in the axle, the pump can repeat its operation cycle autonomously under continuous illumination. NMR spectroscopy was used to observe the dissipative non-equilibrium state generated in situ by light irradiation. We also show that fine changes in the axle structure lead to an improvement in the performance of the motor. Such results highlight the modularity and versatility of this minimalist pump design, which provides facile access to dynamic systems that operate under photoinduced non-equilibrium regimes.


Asunto(s)
Rotaxanos , Cinética , Movimiento (Física) , Termodinámica
18.
J Am Chem Soc ; 143(21): 8046-8055, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33915051

RESUMEN

The mechanical interlocking of molecular components can lead to the appearance of novel and unconventional properties and processes, with potential relevance for applications in nanoscience, sensing, catalysis, and materials science. We describe a [3]rotaxane in which the number of recognition sites available on the axle component can be changed by acid-base inputs, encompassing cases in which this number is larger, equal to, or smaller than the number of interlocked macrocycles. These species exhibit very different properties and give rise to a unique network of acid-base reactions that leads to a fine pKa tuning of chemically equivalent acidic sites. The rotaxane where only one station is available for two rings exhibits a rich coconformational dynamics, unveiled by an integrated experimental and computational approach. In this compound, the two crown ethers compete for the sole recognition site, but can also come together to share it, driven by the need to minimize free energy without evident inter-ring interactions.

19.
Chem Rec ; 21(5): 1161-1181, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33656250

RESUMEN

Since the dawn of supramolecular chemistry, calixarenes have been employed as platforms onto which functional groups and binding sites can be loaded in a regio- and stereocontrolled manner for the recognition of charged and neutral species. Despite their wider annulus, potentially suitable to bind larger guests, the larger members of the calixarene series have been relatively less employed, mainly because of the synthetic difficulties to control their conformational flexibility and their regioselective functionalization. In this account, we will present the achievements gained during the last two decades on the use of the calix[6]arene as a platform to build-up structures in which the macrocycle acts as a wheel for the synthesis of oriented (pseudo)rotaxanes. We also account on how these calix[6]arene hosts affect the reactivity or spectroscopic properties of their bound guests.

20.
Angew Chem Int Ed Engl ; 60(1): 313-320, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32722869

RESUMEN

Multi-functionalization and isomer-purity of fullerenes are crucial tasks for the development of their chemistry in various fields. In both current main approaches-tether-directed covalent functionalization and supramolecular masks-the control of regioselectivity requires multi-step synthetic procedures to prepare the desired tether or mask. Herein, we describe light-responsive tethers, containing an azobenzene photoswitch and two malonate groups, in the double cyclopropanation of [60]fullerene. The formation of the bis-adducts and their spectroscopic and photochemical properties, as well as the effect of azobenzene photoswitching on the regiochemistry of the bis-addition, have been studied. The behavior of the tethers depends on the geometry of the connection between the photoactive core and the malonate moieties. One tether lead to a strikingly different adduct distribution for the E and Z isomers, indicating that the covalent bis-functionalization of C60 can be controlled by light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA