Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 100
1.
ACS Nano ; 17(22): 22388-22398, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-37947443

MoTe2 can be converted from the semiconducting (2H) phase to the semimetallic (1T') phase by several stimuli including heat, electrochemical doping, and strain. This type of phase transition, if reversible and gate-controlled, could be useful for low-power memory and logic. In this work, a gate-controlled and fully reversible 2H to 1T' phase transition is demonstrated via strain in few-layer suspended MoTe2 field effect transistors. Strain is applied by the electric double layer gating of a suspended channel using a single ion conducting solid polymer electrolyte. The phase transition is confirmed by simultaneous electrical transport and Raman spectroscopy. The out-of-plane vibration peak (A1g)─a signature of the 1T' phase─is observed when VSG ≥ 2.5 V. Further, a redshift in the in-plane vibration mode (E2g) is detected, which is a characteristic of a strain-induced phonon shift. Based on the magnitude of the shift, strain is estimated to be 0.2-0.3% by density functional theory. Electrically, the temperature coefficient of resistance transitions from negative to positive at VSG ≥ 2 V, confirming the transition from semiconducting to metallic. The approach to gate-controlled, reversible straining presented here can be extended to strain other two-dimensional materials, explore fundamental material properties, and introduce electronic device functionalities.

2.
Nat Nanotechnol ; 18(11): 1295-1302, 2023 Nov.
Article En | MEDLINE | ID: mdl-37500779

Epitaxial growth of two-dimensional transition metal dichalcogenides on sapphire has emerged as a promising route to wafer-scale single-crystal films. Steps on the sapphire act as sites for transition metal dichalcogenide nucleation and can impart a preferred domain orientation, resulting in a substantial reduction in mirror twins. Here we demonstrate control of both the nucleation site and unidirectional growth direction of WSe2 on c-plane sapphire by metal-organic chemical vapour deposition. The unidirectional orientation is found to be intimately tied to growth conditions via changes in the sapphire surface chemistry that control the step edge location of WSe2 nucleation, imparting either a 0° or 60° orientation relative to the underlying sapphire lattice. The results provide insight into the role of surface chemistry on transition metal dichalcogenide nucleation and domain alignment and demonstrate the ability to engineer domain orientation over wafer-scale substrates.

3.
Nat Nanotechnol ; 18(3): 227-232, 2023 Mar.
Article En | MEDLINE | ID: mdl-36690739

Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection1-4. Although TMMs have been observed in skyrmion lattices1,5, spinor Bose-Einstein condensates6,7, chiral magnets8, vortex rings2,9 and vortex cores10, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature. We further develop soft X-ray vector ptycho-tomography to determine the magnetization vector and emergent magnetic field of the TMMs with a 3D spatial resolution of 10 nm. This spatial resolution is comparable to the magnetic exchange length of transition metals11, enabling us to probe monopole-monopole interactions. We find that the TMM and anti-TMM pairs are separated by 18.3 ± 1.6 nm, while the TMM and TMM, and anti-TMM and anti-TMM pairs are stabilized at comparatively longer distances of 36.1 ± 2.4 nm and 43.1 ± 2.0 nm, respectively. We also observe virtual TMMs created by magnetic voids in the meta-lattice. This work demonstrates that ferromagnetic meta-lattices could be used as a platform to create and investigate the interactions and dynamics of TMMs. Furthermore, we expect that soft X-ray vector ptycho-tomography can be broadly applied to quantitatively image 3D vector fields in magnetic and anisotropic materials at the nanoscale.

4.
J Am Chem Soc ; 144(48): 22026-22034, 2022 12 07.
Article En | MEDLINE | ID: mdl-36417898

Nanothreads are emerging one-dimensional sp3-hybridized materials with high predicted tensile strength and a tunable band gap. They can be synthesized by compressing aromatic or nonaromatic small molecules to pressures ranging from 15-30 GPa. Recently, new avenues are being sought that reduce the pressure required to afford nanothreads; the focus has been placed on the polymerization of molecules with reduced aromaticity, favorable stacking, and/or the use of higher reaction temperatures. Herein, we report the photochemically mediated polymerization of pyridine and furan aromatic precursors, which achieves nanothread formation at reduced pressures. In the case of pyridine, it was found that a combination of slow compression/decompression with broadband UV light exposure yielded a crystalline product featuring a six-fold diffraction pattern with similar interplanar spacings to previously synthesized pyridine-derived nanothreads at a reduced pressure. When furan is compressed to 8 GPa and exposed to broadband UV light, a crystalline solid is recovered that similarly demonstrates X-ray diffraction with an interplanar spacing akin to that of the high-pressure synthesized furan-derived nanothreads. Our method realizes a 1.9-fold reduction in the maximum pressure required to afford furan-derived nanothreads and a 1.4-fold reduction in pressure required for pyridine-derived nanothreads. Density functional theory and multiconfigurational wavefunction-based computations were used to understand the photochemical activation of furan and subsequent cascade thermal cycloadditions. The reduction of the onset pressure is caused by an initial [4+4] cycloaddition followed by increasingly facile thermal [4+2]-cycloadditions during polymerization.


Nanotechnology , Polymerization
5.
ACS Nano ; 16(10): 15884-15893, 2022 Oct 25.
Article En | MEDLINE | ID: mdl-36166474

Nanothreads are one-dimensional macromolecules formed by pressure-induced polymerization along stacks of multiply unsaturated (or highly strained) molecules such as benzene (or cubane). Borazine is isoelectronic to benzene yet with substantial bond polarity, thus motivating a theoretical examination of borazine-derived nanothreads with degrees of saturation of 2, 4, and 6 (defined as the number of four-coordinated boron and nitrogen atoms per borazine formula unit). The energy increases upon going from molecular borazine to degree-2 borazine-derived threads and then decreases for degree-4 and degree-6 nanothreads as more σ bonds are formed. With the constraint of no more than two borazine formula units within the repeat unit of the framework's bonding topology, there are only 13 fully saturated (i.e., degree-6) borazine-derived nanothreads that avoid energetically costly homopolar bonds (as compared to more than 50 such candidates for benzene-derived threads). Only two of these are more stable than borazine. Hypothetical pathways from molecular borazine to these two degree-6 borazine-derived nanothreads are discussed. This relative paucity of outcomes may assist in kinetic control of reaction products. Beyond the high mechanical strength also predicted for carbon-based threads, properties such as piezoelectricity and flexoelectricity may be accessible to the polar lattice of borazine-derived nanothreads, with intriguing prospects for expression in these extremely thin yet rigid objects.

6.
Phys Rev Lett ; 129(9): 096102, 2022 Aug 26.
Article En | MEDLINE | ID: mdl-36083653

Disclinations in a 2D sheet create regions of Gaussian curvature whose inversion produces a reconfigurable surface with many distinct metastable shapes, as shown by molecular dynamics of a disclinated graphene monolayer. This material has a near-Gaussian "density of shapes" and an effectively antiferromagnetic interaction between adjacent cones. A∼10 nm patch has hundreds of distinct metastable shapes with tunable stability and topography on the size scale of biomolecules. As every conical disclination provides an Ising-like degree of freedom, we call this technique "Isigami."


Entropy , Normal Distribution
7.
Nano Lett ; 22(19): 7841-7847, 2022 Oct 12.
Article En | MEDLINE | ID: mdl-36126277

2D materials have intriguing quantum phenomena that are distinctively different from their bulk counterparts. Recently, epitaxially synthesized wafer-scale 2D metals, composed of elemental atoms, are attracting attention not only for their potential applications but also for exotic quantum effects such as superconductivity. By mapping momentum-resolved electronic states using time-resolved and angle-resolved photoemission spectroscopy (ARPES), we reveal that monolayer Ag confined between bilayer graphene and SiC is a large gap (>1 eV) 2D semiconductor, consistent with ab initio GW calculations. The measured valence band dispersion matches the GW quasiparticle band structure. However, the conduction band dispersion shows an anomalously large effective mass of 2.4 m0. Possible mechanisms for this large enhancement in the "apparent mass" are discussed.

8.
Phys Rev E ; 105(4-1): 044105, 2022 Apr.
Article En | MEDLINE | ID: mdl-35590530

A nominally two-dimensional spin model wrapped onto a cylinder can profitably be viewed, especially for long cylinders, as a one-dimensional chain. Each site of such a chain is a ring of spins with a complex state space. Traditional correlation functions are inadequate for the study of correlations in such a system and need to be replaced with something like mutual information. Being induced purely by frustration, the disorder of a cylindrical zero-temperature triangular Ising antiferromagnet (TIAFM) and attendant correlations have a chance of evading the consequences of the Perron-Frobenius theorem which describes and constrains correlations in thermally disordered one-dimensional systems. Correlations in such TIAFM systems and the aforementioned evasion are studied here through a fermionic representation. For cylindrical TIAFM models with open boundary conditions, we explain and derive the following characteristics of end-to-end mutual information: period-three oscillation of the decay length, halving of the decay length compared to what Perron-Frobenius predicts on the basis of transfer matrix eigenvalues, and subexponential decay-inverse square in the length-for certain systems.

9.
Nat Commun ; 13(1): 2972, 2022 May 27.
Article En | MEDLINE | ID: mdl-35624122

The rapid discovery of two-dimensional (2D) van der Waals (vdW) quantum materials has led to heterostructures that integrate diverse quantum functionalities such as topological phases, magnetism, and superconductivity. In this context, the epitaxial synthesis of vdW heterostructures with well-controlled interfaces is an attractive route towards wafer-scale platforms for systematically exploring fundamental properties and fashioning proof-of-concept devices. Here, we use molecular beam epitaxy to synthesize a vdW heterostructure that interfaces two material systems of contemporary interest: a 2D ferromagnet (1T-CrTe2) and a topological semimetal (ZrTe2). We find that one unit-cell (u.c.) thick 1T-CrTe2 grown epitaxially on ZrTe2 is a 2D ferromagnet with a clear anomalous Hall effect. In thicker samples (12 u.c. thick CrTe2), the anomalous Hall effect has characteristics that may arise from real-space Berry curvature. Finally, in ultrathin CrTe2 (3 u.c. thickness), we demonstrate current-driven magnetization switching in a full vdW topological semimetal/2D ferromagnet heterostructure device.

10.
J Am Chem Soc ; 144(20): 9044-9056, 2022 05 25.
Article En | MEDLINE | ID: mdl-35549167

This theoretical study examines the formation, structure, and stability of two of the most ordered nanothreads produced yet, those derived from furan and thiophene. The energetic consequences and activation barriers of the first two steps of oligomerization via a Diels-Alder mechanism were examined. The ca. 20 GPa difference in the synthetic pressures (lower for furan) is explainable in terms of the greater loss of aromaticity by the thiophene. The effects of pressure on the reaction profiles, operating through a volume decrease along the reaction coordinate, are illustrated. The interesting option of polymerization proceeding in one or two directions opens up the possibility of polymers with opposing, cumulative dipole moments. The computed activation volumes are consistently more negative for furan, in accordance with the lower onset pressure of furan polymerization. The energetics of three ordered polymer structures were examined. The syn polymer, with all O/S atoms on the same side, if not allowed to distort, is at a high energy relative to the other two due to the O/S lone pair repulsion, understandably greater for S than for O at the 2.8/2.6 Å separation. Set free, the syn isomers curve or arch in two- or three-dimensional (helical) ways, whose energetics are traced in detail. The syn polymer can also stabilize itself by twisting into zig-zag or helical energy minima. The release of strain in a linear thread as the pressure is relaxed to 1 atm, with consequent thread curving, is a likely mechanism for the observed loss of the crystalline order in the polymer as it is returned to ambient pressure.


Furans , Thiophenes , Cycloaddition Reaction , Furans/chemistry , Models, Theoretical , Polymers/chemistry
11.
Phys Rev Lett ; 129(26): 266401, 2022 Dec 23.
Article En | MEDLINE | ID: mdl-36608189

Although doping with alkali atoms is a powerful technique for introducing charge carriers into physical systems, the resulting charge-transfer systems are generally not air stable. Here we describe computationally a strategy towards increasing the stability of alkali-doped materials that employs stoichiometrically unbalanced salt crystals with excess cations (which could be deposited during, e.g., in situ gating) to achieve doping levels similar to those attained by pure alkali metal doping. The crystalline interior of the salt crystal acts as a template to stabilize the excess dopant atoms against oxidation and deintercalation, which otherwise would be highly favorable. We characterize this doping method for graphene, NbSe_{2}, and Bi_{2}Se_{3} and its effect on direct-to-indirect band gap transitions, 2D superconductivity, and thermoelectric performance. Salt intercalation should be generally applicable to systems which can accommodate this "ionic crystal" doping (and particularly favorable when geometrical packing constraints favor nonstoichiometry).

12.
Phys Rev Lett ; 127(11): 117203, 2021 Sep 10.
Article En | MEDLINE | ID: mdl-34558933

Artificial spin ice systems have opened experimental windows into a range of model magnetic systems through the control of interactions among nanomagnet moments. This control has previously been enabled by altering the nanomagnet size and the geometry of their placement. Here we demonstrate that the interactions in artificial spin ice can be further controlled by including a soft ferromagnetic underlayer below the moments. Such a substrate also breaks the symmetry in the array when magnetized, introducing a directional component to the correlations. Using spatially resolved magneto-optical Kerr effect microscopy to image the demagnetized ground states, we show that the correlation of the demagnetized states depends on the direction of the underlayer magnetization. Further, the relative interaction strength of nearest and next-nearest neighbors varies significantly with the array geometry. We exploit this feature to induce frustration in an inherently unfrustrated square lattice geometry, demonstrating new possibilities for effective geometries in two-dimensional nanomagnetic systems.

13.
Adv Mater ; 33(44): e2104265, 2021 Nov.
Article En | MEDLINE | ID: mdl-34480500

Chemically stable quantum-confined 2D metals are of interest in next-generation nanoscale quantum devices. Bottom-up design and synthesis of such metals could enable the creation of materials with tailored, on-demand, electronic and optical properties for applications that utilize tunable plasmonic coupling, optical nonlinearity, epsilon-near-zero behavior, or wavelength-specific light trapping. In this work, it is demonstrated that the electronic, superconducting, and optical properties of air-stable 2D metals can be controllably tuned by the formation of alloys. Environmentally robust large-area 2D-Inx Ga1- x alloys are synthesized byConfinement Heteroepitaxy (CHet). Near-complete solid solubility is achieved with no evidence of phase segregation, and the composition is tunable over the full range of x by changing the relative elemental composition of the precursor. The optical and electronic properties directly correlate with alloy composition, wherein the dielectric function, band structure, superconductivity, and charge transfer from the metal to graphene are all controlled by the indium/gallium ratio in the 2D metal layer.

14.
Nano Lett ; 21(15): 6487-6495, 2021 Aug 11.
Article En | MEDLINE | ID: mdl-34314181

Engineering atomic-scale defects is crucial for realizing wafer-scale, single-crystalline transition metal dichalcogenide monolayers for electronic devices. However, connecting atomic-scale defects to larger morphologies poses a significant challenge. Using electron microscopy and ReaxFF reactive force field-based molecular dynamics simulations, we provide insights into WS2 crystal growth mechanisms, providing a direct link between synthetic conditions and microstructure. Dark-field TEM imaging of coalesced monolayer WS2 films illuminates defect arrays that atomic-resolution STEM imaging identifies as translational grain boundaries. Electron diffraction and high-resolution imaging reveal that the films have nearly a single orientation with imperfectly stitched domains that tilt out-of-plane when released from the substrate. Imaging and ReaxFF simulations uncover two types of translational mismatch, and we discuss their origin related to relatively fast growth rates. Statistical analysis of >1300 facets demonstrates that microstructural features are constructed from nanometer-scale building blocks, describing the system across sub-Ångstrom to multimicrometer length scales.

15.
J Am Chem Soc ; 2021 Jun 15.
Article En | MEDLINE | ID: mdl-34130458

The molecular structure of nanothreads produced by the slow compression of 13C4-furan was studied by advanced solid-state NMR. Spectral editing showed that >95% of carbon atoms were bonded to one hydrogen (C-H) and that there were 2-4% CH2, 0.6% C═O, and <0.3% CH3 groups. Alkenes accounted for 18% of the CH moieties, while trapped, unreacted furan made up 7%. Two-dimensional (2D) 13C-13C and 1H-13C NMR identified 12% of all carbon in asymmetric O-CH═CH-CH-CH- and 24% in symmetric O-CH-CH═CH-CH- rings. While the former represented defects or chain ends, some of the latter appeared to form repeating thread segments. Around 10% of carbon atoms were found in highly ordered, fully saturated nanothread segments. Unusually slow 13C spin-exchange with sites outside the perfect thread segments documented a length of at least 14 bonds; the small width of the perfect-thread signals also implied a fairly long, regular structure. Carbons in the perfect threads underwent relatively slow spin-lattice relaxation, indicating slow spin exchange with other threads and smaller amplitude motions. Through partial inversion recovery, the signals of the perfect threads were observed and analyzed selectively. Previously considered syn-threads with four different C-H bond orientations were ruled out by centerband-only detection of exchange NMR, which was, on the contrary, consistent with anti-threads. The observed 13C chemical shifts were matched well by quantum-chemical calculations for anti-threads but not for more complex structures like syn/anti-threads. These observations represent the first direct determination of the atomic-level structure of fully saturated nanothreads.

16.
ACS Nano ; 15(3): 4134-4143, 2021 Mar 23.
Article En | MEDLINE | ID: mdl-33470790

Carbon nanothreads, which are one-dimensional sp3-rich polymers, combine high tensile strength with flexibility owing to subnanometer widths and diamond-like cores. These extended carbon solids are constructed through pressure-induced polymerization of sp2 molecules such as benzene. Whereas a few examples of carbon nanothreads have been reported, the need for high onset pressures (≥17 GPa) to synthesize them precludes scalability and limits scope. Herein, we report the scalable synthesis of carbon nanothreads based on molecular furan, which can be achieved through ambient temperature pressure-induced polymerization with an onset reaction pressure of only 10 GPa due to its lessened aromaticity relative to other molecular precursors. When slowly compressed to 15 GPa and gradually decompressed to 1.5 GPa, a sharp 6-fold diffraction pattern is observed in situ, indicating a well-ordered crystalline material formed from liquid furan. Single-crystal X-ray diffraction (XRD) of the reaction product exhibits three distinct d-spacings from 4.75 to 4.9 Å, whose size, angular spacing, and degree of anisotropy are consistent with our atomistic simulations for crystals of furan nanothreads. Further evidence for polymerization was obtained by powder XRD, Raman/IR spectroscopy, and mass spectrometry. Comparison of the IR spectra with computed vibrational modes provides provisional identification of spectral features characteristic of specific nanothread structures, namely syn, anti, and syn/anti configurations. Mass spectrometry suggests that molecular weights of at least 6 kDa are possible. Furan therefore presents a strategic entry toward scalable carbon nanothreads.

17.
Adv Sci (Weinh) ; 7(24): 2001174, 2020 Dec.
Article En | MEDLINE | ID: mdl-33344114

Dilute magnetic semiconductors (DMS), achieved through substitutional doping of spin-polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto-electric or magneto-optical devices, especially for two-dimensional (2D) systems such as transition metal dichalcogenides that accentuate interactions and activate valley degrees of freedom. Practical applications of 2D magnetism will likely require room-temperature operation, air stability, and (for magnetic semiconductors) the ability to achieve optimal doping levels without dopant aggregation. Here, room-temperature ferromagnetic order obtained in semiconducting vanadium-doped tungsten disulfide monolayers produced by a reliable single-step film sulfidation method across an exceptionally wide range of vanadium concentrations, up to 12 at% with minimal dopant aggregation, is described. These monolayers develop p-type transport as a function of vanadium incorporation and rapidly reach ambipolarity. Ferromagnetism peaks at an intermediate vanadium concentration of ~2 at% and decreases for higher concentrations, which is consistent with quenching due to orbital hybridization at closer vanadium-vanadium spacings, as supported by transmission electron microscopy, magnetometry, and first-principles calculations. Room-temperature 2D-DMS provide a new component to expand the functional scope of van der Waals heterostructures and bring semiconducting magnetic 2D heterostructures into the realm of practical application.

18.
Nano Lett ; 20(11): 8312-8318, 2020 Nov 11.
Article En | MEDLINE | ID: mdl-33079555

Near-infrared-to-visible second harmonic generation from air-stable two-dimensional polar gallium and indium metals is described. The photonic properties of 2D metals, including the largest second-order susceptibilities reported for metals (approaching 10 nm/V), are determined by the atomic-level structure and bonding of two-to-three-atom-thick crystalline films. The bond character evolved from covalent to metallic over a few atomic layers, changing the out-of-plane metal-metal bond distances by approximately ten percent (0.2 Å), resulting in symmetry breaking and an axial electrostatic dipole that mediated the large nonlinear response. Two different orientations of the crystalline metal atoms, corresponding to lateral displacements <2 Å, persisted in separate micrometer-scale terraces to generate distinct harmonic polarizations. This strong atomic-level structure-property interplay suggests metal photonic properties can be controlled with atomic precision.

19.
Nano Lett ; 20(5): 3306-3312, 2020 May 13.
Article En | MEDLINE | ID: mdl-32227973

Metalattices are artificial 3D solids, periodic on sub-100 nm length scales, that enable the functional properties of materials to be tuned. However, because of their complex structure, predicting and characterizing their properties is challenging. Here we demonstrate the first nondestructive measurements of the mechanical and structural properties of metalattices with feature sizes down to 14 nm. By monitoring the time-dependent diffraction of short wavelength light from laser-excited acoustic waves in the metalattices, we extract their acoustic dispersion, Young's modulus, filling fraction, and thicknesses. Our measurements are in excellent agreement with macroscopic predictions and potentially destructive techniques such as nanoindentation and scanning electron microscopy, with increased accuracy over larger areas. This is interesting because the transport properties of these metalattices do not obey bulk predictions. Finally, this approach is the only way to validate the filling fraction of metalattices over macroscopic areas. These combined capabilities can enable accurate synthesis of nanoenhanced materials.

20.
ACS Nano ; 14(4): 4235-4243, 2020 Apr 28.
Article En | MEDLINE | ID: mdl-32223186

Controlling the thermal conductivity of semiconductors is of practical interest in optimizing the performance of thermoelectric and phononic devices. The insertion of inclusions of nanometer size in a semiconductor is an effective means of achieving such control; it has been proposed that the thermal conductivity of silicon could be reduced to 1 W/m/K using this approach and that a minimum in the heat conductivity would be reached for some optimal size of the inclusions. Yet the experimental verification of this design rule has been limited. In this work, we address this question by studying the thermal properties of silicon metalattices that consist of a periodic distribution of spherical inclusions with radii from 7 to 30 nm, embedded into silicon. Experimental measurements confirm that the thermal conductivity of silicon metalattices is as low as 1 W/m/K for silica inclusions and that this value can be further reduced to 0.16 W/m/K for silicon metalattices with empty pores. A detailed model of ballistic phonon transport suggests that this thermal conductivity is close to the lowest achievable by tuning the radius and spacing of the periodic inhomogeneities. This study is a significant step in elucidating the scaling laws that dictate ballistic heat transport at the nanoscale in silicon and other semiconductors.

...