Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Vet Pathol ; 61(4): 641-652, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38345017

RESUMEN

Mycobacterium ulcerans ecovar Liflandii (MuLiflandii) was identified as the causative agent of mycobacteriosis in a research colony of Zaire dwarf clawed frogs (Hymenochirus boettgeri) at the University of Michigan. Clinical presentation included lethargy, generalized septicemia, cutaneous granulomas, coelomic effusion, and acute mortality. Identification of the mycobacterial species was based on molecular, microbiological, and histopathologic characteristics. These findings indicate that MuLiflandii is a primary cause of morbidity and mortality in Zaire dwarf clawed frogs and should be considered in the differential diagnosis of sepsis and coelomic effusion in amphibians. Mycobacterial speciation is important given the variability in pathogenesis within the family Mycobacteriaceae and the implications for both animal and human health as potential zoonoses. The Zaire dwarf clawed frog is a species common in the pet trade, and these findings provide consideration for this pathogen as a potentially important public health concern. This is the first report of MuLiflandii infection in the genus Hymenochirus and illustrates the diagnostic challenges of differentiating among both mycolactone-producing mycobacteria and Mycobacterium marinum. Furthermore, we demonstrate the utility of environmental sampling for this pathogen within the tank system, suggesting this mode of sampling could replace the need for direct frog surveillance.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium ulcerans , Animales , Infecciones por Mycobacterium no Tuberculosas/veterinaria , Infecciones por Mycobacterium no Tuberculosas/patología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium ulcerans/aislamiento & purificación , Anuros/microbiología
2.
J Am Assoc Lab Anim Sci ; 63(1): 20-33, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101805

RESUMEN

The Leibniz Institute on Aging has maintained killifish colonies for over 15 y. Our veterinarians, scientists, and animal technicians developed a fish health scoring system and routine colony health surveillance program for our colonies. Over a 4-y period, health data from the African turquoise killifish Nothobranchius furzeri colony were systematically collected and analyzed. The fish health assessment system facilitated categorization of clinical signs and differentiation of fish with mild clinical signs from fish that required euthanasia. This report provides new information on clinical signs and conditions that may occur in young and aged N. furzeri. To be comprehensive, a colony health surveillance program incorporates animal health at both the individual and the population levels. The quarterly routine health monitoring program identified Mycobacterium spp. as the most common agent in our facility and identified the killifish pathogen (Loma acerinae) for the first time. Taken together, these findings demonstrate the importance of a comprehensive colony health management system in a fish research facility. By improving the health and welfare of fish used for research, the scientific community will benefit from less variable and more reliably reproducible research results.


Asunto(s)
Envejecimiento , Fundulus heteroclitus , Peces Killi , Animales , Peces
3.
Methods Mol Biol ; 2562: 41-74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36272067

RESUMEN

Laboratory animal health monitoring programs are necessary to protect animal health and welfare, the validity of experimental data, and human health against zoonotic infections. Health monitoring programs should be designed based on a risk assessment and knowledge about the biology and transmission of salamander pathogens. Both traditional and molecular diagnostic platforms are available for salamanders, and they provide complementary information. A comprehensive approach to health monitoring leverages the advantages of multiple platforms to provide a more complete picture of colony health and pathogen status. This chapter presents key considerations in the design and implementation of a colony health monitoring program for laboratory salamanders, including protocols for necropsy and sample collection.


Asunto(s)
Urodelos , Animales , Humanos
4.
J Am Assoc Lab Anim Sci ; 61(4): 370-380, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35764385

RESUMEN

Routine health monitoring is an integral part of managing SPF rodent colonies. In recent years, rack-level environmental sampling has been introduced as an adjunct method or replacement for exposure of sentinel rodents to soiled bedding. However, rack-level environmental monitoring is not compatible with rodent housing systems that have cage-level filtration. The current study investigated whether exposure of sterile flocked swabs to soiled bedding can be an alternative sampling method for routine health monitoring in mice, thus replacing the use of sentinels in soiled-bedding cages. Flocked swabs were placed in cages containing pooled samples of soiled bedding but no mice; swabs remained there for 90 d, with weekly agitation and biweekly swabbing of the cage floor to mimic the agitation of soiled bedding by sentinel mice and facilitate the collection of dust particles. Fecal samples were collected from both colony and sentinel mice. For environmental samples, exhaust debris was collected from the rack plenum, and dust samples were collected from the exhaust hose. All samples were collected on days 88 through 91 and were tested for multiple pathogens by using real-time PCR assays. To determine the diagnostic agreement of flocked swab sampling with the other methods, we used κ statistics to compare the test results from flocked swabs with those from sentinel feces, exhaust debris, and colony animal feces; we found excellent agreement between the colony feces and the flocked swab methods. The sterile flocked swab method detected all enzootic pathogens in the colonies tested. Results from flocked swab samples had the least agreement with sentinel feces, which also failed to detect the presence of fur mites. This study supports the use of sterile flocked swabs as alternative to using sentinel mice, thus conforming to the guiding principles of replacement and reduction in the use of animals for routine colony health monitoring.


Asunto(s)
Vivienda para Animales , Enfermedades de los Roedores , Animales , Ropa de Cama y Ropa Blanca , Polvo/análisis , Ratones , Enfermedades de los Roedores/diagnóstico , Roedores
5.
Anim Microbiome ; 3(1): 55, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34353374

RESUMEN

BACKGROUND: Zebrafish used in research settings are often housed in recirculating aquaculture systems (RAS) which rely on the system microbiome, typically enriched in a biofiltration substrate, to remove the harmful ammonia generated by fish via oxidation. Commercial RAS must be allowed to equilibrate following installation, before fish can be introduced. There is little information available regarding the bacterial community structure in commercial zebrafish housing systems, or the time-point at which the system or biofilter reaches a microbiological equilibrium in RAS in general. METHODS: A zebrafish housing system was monitored at multiple different system sites including tank water in six different tanks, pre- and post-particulate filter water, the fluidized bed biofilter substrate, post-carbon filter water, and water leaving the ultra-violet (UV) disinfection unit and entering the tanks. All of these samples were collected in quadruplicate, from prior to population of the system with zebrafish through 18 weeks post-population, and analyzed using both 16S rRNA amplicon sequencing and culture using multiple agars and annotation of isolates via matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry. Sequencing data were analyzed using traditional methods, network analyses of longitudinal data, and integration of culture and sequence data. RESULTS: The water microbiome, dominated by Cutibacterium and Staphylococcus spp., reached a relatively stable richness and composition by approximately three to four weeks post-population, but continued to evolve in composition throughout the study duration. The microbiomes of the fluidized bed biofilter and water leaving the UV disinfection unit were distinct from water at all other sites. Core taxa detected using molecular methods comprised 36 amplicon sequence variants, 15 of which represented Proteobacteria including multiple members of the families Burkholderiaceae and Sphingomonadaceae. Culture-based screening yielded 36 distinct isolates, and showed moderate agreement with sequencing data. CONCLUSIONS: The microbiome of commercial RAS used for research zebrafish reaches a relatively stable state by four weeks post-population and would be expected to be suitable for experimental use following that time-point.

6.
Comp Med ; 71(4): 318-322, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34187617

RESUMEN

A small colony of zebrafish (Danio rerio) experienced 30% acute mortality within a few days after receipt from a commercial source. A few fish presented with small areas of raised scales or tissue necrosis, primarily near the caudal peduncle. Edwardsiella ictaluri (E. ictaluri) was identified by real-time PCR of pooled zebrafish and swabs of the pre-filter and fine filter pads, with subsequent sequence analysis. E. ictaluri is most commonly associated with an enteric septicemia in catfish species and can have significant economic impact on commercial catfish fisheries. However, several references report naturally occurring E. ictaluri infection of nonictalurid fishes, including zebrafish. Ours is the first report demonstrating the use of environmental sampling to identify E. ictaluri in a zebrafish colony by real-time PCR. Moreover, our report indicates that E. ictaluri is a relevant disease for institutions using zebrafish as research species and emphasizes the importance of carefully considering importation and quarantine practices.


Asunto(s)
Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Edwardsiella ictaluri , Infecciones por Enterobacteriaceae/veterinaria , Laboratorios , Pez Cebra
7.
J Am Assoc Lab Anim Sci ; 60(3): 249-258, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33952385

RESUMEN

Recent studies have shown beneficial effects of environmental enrichment (EE) for zebrafish, while infection of zebrafish with the common pathogen Pseudoloma neurophilia has negative effects. This study investigates the effects of P. neurophilia infection and EE in housing and breeding tanks on measures of behavior, growth, and reproduction. Zebrafish were socially housed and were either infected, P. neurophilia-infected (PNI) (n = 12 tanks), or SPF for P. neurophilia (SPF) (n = 24 tanks). Fish were housed with or without EE, which consisted of placing plastic plants in the tanks; sprigs from plants were placed in half of the breeding tanks for half of breedings, alternating breeding tanks without EE weekly. Behavioral testing included the Novel Tank Diving Test (NTT) and Light/Dark Preference Test (LDT) conducted prior to breeding. At the end of the study, biometric data were collected. Histopathology and molecular analysis for common diseases in fish confirmed that SPF fish remained SPF and that fish from all PNI tanks were infected. PNI fish produced significantly fewer eggs and had lower body weights and lengths than did SPF fish. Fish with EE had longer body lengths, than did fish without EE, and male fish had longer body lengths than female fish. The biometric results and reproductive measures show that SPF fish exhibited better growth and suggest that EE in housing tanks could improve fish growth. The behavioral test results were inconclusive regard- ing whether infection status or EE altered anxiety-like behavior. Our results support other recent studies showing negative effects of P. neurophilia infection on zebrafish.


Asunto(s)
Enfermedades de los Peces , Microsporidiosis , Animales , Femenino , Masculino , Microsporidios , Reproducción , Pez Cebra
8.
Comp Med ; 71(3): 210-214, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33836843

RESUMEN

Corynebacterium bovis, the causative agent of hyperkeratotic dermatitis in immunodeficient mice, is a significant problem in preclinical oncology research. Infection results in lifelong skin colonization and a decrease in successful engraftment of patient-derived xenograft tumor models. The use of antimicrobial agents for C. bovis is controversial in light of reports of poor efficacy and the possibility of selection for resistant strains. The purpose of this study was to describe the antimicrobial susceptibilities of C. bovis isolates obtained exclusively from immunodeficient rodents in order to aid in antimicrobial dose determination. Between 1995 and 2018, 15 isolates were collected from 11 research institutions across the United States. Antimicrobial susceptibility testing was performed for 24 antimicrobials commonly used against gram-positive bacteria. Our results provide an updated understanding of the susceptibility profiles of rodent C. bovis isolates, indicating little variability between geographically and temporally distant isolates. These results will facilitate appropriate antimicrobial use to prevent and treat C. bovis infections in immunodeficient rodents.


Asunto(s)
Infecciones por Corynebacterium , Roedores , Animales , Antibacterianos/farmacología , Corynebacterium , Infecciones por Corynebacterium/tratamiento farmacológico , Infecciones por Corynebacterium/veterinaria , Ratones , Pruebas de Sensibilidad Microbiana , Estados Unidos
9.
Lab Anim (NY) ; 50(1): 19-25, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268901

RESUMEN

Poorly controlled background genetics in animal models contributes to the lack of reproducibility that is increasingly recognized in biomedical research. The laboratory zebrafish, Danio rerio, has been an important model organism for decades in many research areas, yet inbred strains and traditionally managed outbred stocks are not available for this species. Sometimes incorrectly referred to as 'inbred strains' or 'strains', zebrafish wild-type lines possess background genetics that are often not well characterized, and breeding practices for these lines have not been consistent over time or among institutions. In this Perspective, we trace key milestones in the history of one of the most widely used genetic backgrounds, the AB line, to illustrate the dynamic complexity within an example background that is largely invisible when reading the scientific literature. Failure to adequately control for genetic background compromises the validity of experimental outcomes. We therefore propose that authors provide as much specific detail about the origin and genetic makeup of zebrafish lines as is reasonable and possible, and that the terms used to describe background genetics be applied in a way that is consistent with other fish and mammalian model organisms. We strongly encourage the adoption of genetic monitoring for the characterization of existing zebrafish lines, to help detect genetic contamination in breeding colonies and to verify the level of genetic heterogeneity in breeding colonies over time. Careful attention to background genetics will improve transparency and reproducibility, therefore improving the utility of the zebrafish as a model organism.


Asunto(s)
Animales de Laboratorio , Pez Cebra , Animales , Ratones , Reproducibilidad de los Resultados , Pez Cebra/genética
10.
Comp Med ; 70(4): 370-375, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32731906

RESUMEN

During a 6-mo period, two 5-6 mo old female chinchillas (Chinchilla lanigera) were examined at the University of Colorado Anschutz Medical Campus after the discovery of firm, nonmobile masses in the left ventral cervical and left axillary region. Other than these findings and mild weight loss, both chinchillas' physical exams were normal. Bloodwork revealed an inflammatory leukogram characterized by leukocytosis, toxic neutrophils, lymphopenia, and monocytosis with mild, nonregenerative anemia. At necropsy, both masses were identified as abscesses. Streptococcus equi, subspecies zooepidemicus (S. zooepidemicus) was isolated in pure culture. Histology of the lungs, liver, spleen, and kidneys showed a marked increase in the numbers of both polymorphonuclear leukocytes and lymphocytes. Both animals were deemed unsuitable for research and were euthanized under isoflurane anesthesia by an intracardiac injection of pentobarbital sodium solution. S. zooepidemicus is an opportunistic, commensal organism found in the upper respiratory tract of horses. This organism has been documented to cause disease in other species and is zoonotic. Infections in humans have been reported, resulting in glomerulonephritis, endocarditis, septic arthritis, osteomyelitis, meningitis, and death. To aid in diagnosis and prospective surveillance of this bacteria, oral and nasal swabs were collected from the remaining cohort of chinchillas, and a qPCR screening assay was implemented. Within 12 mo, 4 of 41 additional females tested positive by culture or qPCR, resulting in a disease prevalence of 14% (6 of 43). However, only 2 of the additional 4 S. zooepidemicus positive animals developed clinical signs. The potential for the spread of infection, zoonosis, and adverse effects on research demonstrate that surveillance for S. zooepidemicus should be considered in a biomedical research environment.


Asunto(s)
Chinchilla , Enfermedades de los Roedores/microbiología , Infecciones Estreptocócicas/microbiología , Animales , Zoonosis Bacterianas/microbiología , Zoonosis Bacterianas/transmisión , Femenino , Estudios Prospectivos , Enfermedades de los Roedores/diagnóstico , Enfermedades de los Roedores/patología , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/patología , Streptococcus equi/aislamiento & purificación
11.
PLoS Pathog ; 16(1): e1008262, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31971979

RESUMEN

Mouse kidney parvovirus (MKPV) is a member of the provisional genus Chapparvovirus that causes renal disease in immune-compromised mice, with a disease course reminiscent of polyomavirus-associated nephropathy in immune-suppressed kidney transplant patients. Here we map four major MKPV transcripts, created by alternative splicing, to a common initiator region, and use mass spectrometry to identify "p10" and "p15" as novel chapparvovirus accessory proteins produced in MKPV-infected kidneys. p15 and the splicing-dependent putative accessory protein NS2 are conserved in all near-complete amniote chapparvovirus genomes currently available (from mammals, birds and a reptile). In contrast, p10 may be encoded only by viruses with >60% amino acid identity to MKPV. We show that MKPV is kidney-tropic and that the bat chapparvovirus DrPV-1 and a non-human primate chapparvovirus, CKPV, are also found in the kidneys of their hosts. We propose, therefore, that many mammal chapparvoviruses are likely to be nephrotropic.


Asunto(s)
Riñón/virología , Infecciones por Parvoviridae/veterinaria , Infecciones por Parvoviridae/virología , Parvovirinae/fisiología , Enfermedades de los Roedores/virología , Proteínas Virales/metabolismo , Tropismo Viral , Animales , Humanos , Ratones , Parvovirinae/genética , Proteínas Virales/genética
12.
Zebrafish ; 16(3): 291-299, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30939077

RESUMEN

Zebrafish have been extensively used as a model system for research in vertebrate development and pathogen-host interactions. We describe the complete genome of a novel picornavirus identified during a viral metagenomics analysis of zebrafish gut tissue. The closest relatives of this virus showed identity of <20% in their P1 capsids and <36% in their RdRp qualifying zebrafish picornavirus-1 (ZfPV-1) as member of a novel genus with a proposed name of Cyprivirus. Reverse transcription (RT)-PCR testing of zebrafish from North America, Europe, and Asia showed ZfPV-1 to be globally distributed, being detected in 23 of 41 (56%) institutions tested. In situ hybridization of whole zebrafish showed viral RNA was restricted to a subset of enterocytes and cells in the subjacent lamina propria of the intestine and the intestinal mucosa. This naturally occurring and apparently asymptomatic infection (in wild-type zebrafish lineage AB) provides a natural infection system to study picornavirus-host interactions in an advanced vertebrate model organism. Whether ZfPV-1 infection affects any immunological, developmental, or other biological processes in wild-type or mutant zebrafish lineages remains to be determined.


Asunto(s)
Enfermedades de los Peces/virología , Mucosa Intestinal/virología , Infecciones por Picornaviridae/virología , Picornaviridae/clasificación , Pez Cebra , Animales
13.
J Am Assoc Lab Anim Sci ; 57(4): 401-414, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29970215

RESUMEN

Preparing the skin of rodents for surgery often involves multiple applications of antiseptic agents. However, fewer applications may achieve the same antiseptic outcome. We evaluated the antimicrobial efficacy and effects on intraoperative body temperature of various surgical scrub agents, including novel waterless alcohol-based (WAB) options. Prior to ventral laparotomy, female C57BL/6 mice were treated with 0.9% saline (control); 70% ethanol; 10% povidone-iodine alternated with saline or 70% ethanol; 2% chlorhexidine digluconate alternated with saline or 70% ethanol; or 1 of 3 WAB products-commercial surgical scrub A, commercial surgical scrub B, or a common commercial hand sanitizer. Core temperatures were recorded, and aerobic culture swabs were collected from the surgical site at multiple time points. Intraoperative temperature trajectories for animals treated with scrub B, 10% povidone-iodine with saline, or hand sanitizer did not differ from saline (control). Temperature trajectories of mice treated with other scrub agents did differ significantly from saline. Bacteria were not detected at the operative site after 3 scrubs of 70% ethanol or 10% povidone-iodine alternated with ethanol, 2 scrubs of scrub A or B, 1 scrub of hand sanitizer, and both 1 and 3 scrubs of 2% chlorhexidine alternated with ethanol. Scrub B and 2% chlorhexidine-ethanol demonstrated prolonged antibacterial efficacy. Histology of corresponding haired skin sections revealed no differences in postoperative healing between groups, and no postoperative infections occurred. These results indicate that various novel WAB disinfectants, particularly scrub B (61% ethanol and 1% chlorhexidine gluconate), mitigate intraoperative temperature effects associated with several traditional agents and combinations. Furthermore, reduction of skin bacterial load without adverse effects on healing was seen with fewer than triplicate applications of most tested agents. Ultimately effective skin preparation can be achieved by using only 1 or 2 applications of scrub, thus rendering the triplicate skin-prep method unnecessary in laboratory mice.


Asunto(s)
Antiinfecciosos Locales/farmacología , Clorhexidina/análogos & derivados , Etanol/farmacología , Povidona Yodada/farmacología , Infección de la Herida Quirúrgica/veterinaria , Animales , Antibacterianos , Antiinfecciosos , Compuestos de Benzalconio , Clorhexidina/farmacología , Desinfectantes , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Cuidados Preoperatorios , Piel , Infección de la Herida Quirúrgica/prevención & control
14.
Comp Med ; 67(3): 263-269, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28662755

RESUMEN

The use of zebrafish (Danio rerio) as an animal model for experimental studies of stress has increased rapidly over the years. Although many physiologic and behavioral characteristics associated with stress have been defined in zebrafish, the effects of stress on hematologic parameters have not been described. The purpose of our study was to induce a rise in endogenous cortisol through various acute and chronic stressors and compare the effects of these stressors on peripheral WBC populations. Acutely stressed fish underwent dorsal or full-body exposure to air for 3 min, repeated every 30 min over the course of 90 min. Chronically stressed fish underwent exposure to stressors twice daily over a period of 5 d. After the last stressful event, fish were euthanized, and whole blood and plasma were obtained. A drop of whole blood was used to create a blood smear, which was subsequently stained with a modified Wright-Giemsa stain and a 50-WBC differential count determined. Plasma cortisol levels were determined by using a commercially available ELISA. Endogenous cortisol concentrations were significantly higher in both stressed groups as compared with control fish. Acutely stressed fish demonstrated significant lymphopenia, monocytosis, and neutrophilia, compared with unstressed, control fish. Chronic stress induced lymphopenia and monocytosis but no significant changes in relative neutrophil populations in zebrafish. The changes in both stressed groups most likely are due to increases in endogenous cortisol concentrations and represent the first description of a stress leukogram in zebrafish.


Asunto(s)
Estrés Fisiológico , Pez Cebra/fisiología , Animales , Hidrocortisona/sangre , Recuento de Leucocitos , Linfopenia/etiología , Pez Cebra/sangre
15.
J Am Assoc Lab Anim Sci ; 56(4): 412-424, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28724491

RESUMEN

Molecular diagnostic assays offer both exquisite sensitivity and the ability to test a wide variety of sample types. Various types of environmental sample, such as detritus and concentrated water, might provide a useful adjunct to sentinels in routine zebrafish health monitoring. Similarly, antemortem sampling would be advantageous for expediting zebrafish quarantine, without euthanasia of valuable fish. We evaluated the detection of Mycobacterium chelonae, M. fortuitum, M. peregrinum, Pseudocapillaria tomentosa, and Pseudoloma neurophilia in zebrafish, detritus, pooled feces, and filter membranes after filtration of 1000-, 500-, and 150-mL water samples by real-time PCR analysis. Sensitivity varied according to sample type and pathogen, and environmental sampling was significantly more sensitive than zebrafish sampling for detecting Mycobacterium spp. but not for Pseudocapillaria neurophilia or Pseudoloma tomentosa. The results of these experiments provide strong evidence of the utility of multiple sample types for detecting pathogens according to each pathogen's life cycle and ecological niche within zebrafish systems. In a separate experiment, zebrafish subclinically infected with M. chelonae, M. marinum, Pleistophora hyphessobryconis, Pseudocapillaria tomentosa, or Pseudoloma neurophilia were pair-spawned and individually tested with subsets of embryos from each clutch that received no rinse, a fluidizing rinse, or were surface-disinfected with sodium hypochlorite. Frequently, one or both parents were subclinically infected with pathogen(s) that were not detected in any embryo subset. Therefore, negative results from embryo samples may not reflect the health status of the parent zebrafish.


Asunto(s)
Enfermedades de los Peces/microbiología , Enfermedades de los Peces/parasitología , Infecciones/veterinaria , Cuarentena/veterinaria , Pez Cebra , Animales , Embrión no Mamífero/microbiología , Embrión no Mamífero/parasitología , Infecciones/microbiología , Infecciones/parasitología , Microsporidios/clasificación , Microsporidios/aislamiento & purificación , Mycobacterium/clasificación , Mycobacterium/aislamiento & purificación , Nematodos/clasificación , Nematodos/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
J Am Assoc Lab Anim Sci ; 55(6): 782-788, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27931317

RESUMEN

Sampling of bedding debris within the exhaust systems of ventilated racks may be a mechanism for detecting murine pathogens in colony animals. This study examined the effectiveness of detecting pathogens by PCR analysis of exhaust debris samples collected from ventilated racks of 2 different rack designs, one with unfiltered air flow from within the cage to the air-exhaust pathway, and the other had a filter between the cage and the air-exhaust pathway. For 12 wk, racks were populated with either 1 or 5 cages of mice (3 mice per cage) infected with one of the following pathogens: mouse norovirus (MNV), mouse parvovirus (MPV), mouse hepatitis virus (MHV), Helicobacter spp., Pasteurella pneumotropica, pinworms, Entamoeba muris, Tritrichomonas muris, and fur mites. Pathogen shedding by infected mice was monitored throughout the study. In the filter-containing rack, PCR testing of exhaust plenums yielded negative results for all pathogens at all time points of the study. In the rack with open air flow, pathogens detected by PCR analysis of exhaust debris included MHV, Helicobacter spp., P. pneumotropica, pinworms, enteric protozoa, and fur mites; these pathogens were detected in racks housing either 1 or 5 cages of infected mice. Neither MPV nor MNV was detected in exhaust debris, even though prolonged viral shedding was confirmed. These results demonstrate that testing rack exhaust debris from racks with unfiltered air flow detected MHV, enteric bacteria and parasites, and fur mites. However, this method failed to reliably detect MNV or MPV infection of colony animals.


Asunto(s)
Filtros de Aire/microbiología , Filtros de Aire/parasitología , Vivienda para Animales , Infecciones/veterinaria , Enfermedades de los Roedores/microbiología , Enfermedades de los Roedores/parasitología , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Infecciones/microbiología , Infecciones/parasitología , Infecciones/virología , Ratones , Parásitos/clasificación , Parásitos/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Enfermedades de los Roedores/virología , Virus/clasificación , Virus/aislamiento & purificación
17.
Comp Med ; 66(5): 361-366, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27780002

RESUMEN

A group studying acute lung injury observed an increased percentage of neutrophils in the bronchoalveolar lavage (BAL) fluid of mice. BAL was performed, and lung samples were collected sterilely from 5 C57BL/6 mice that had been bred inhouse. Pure colonies of bacteria, initially identified as Bordetella hinzii were cultured from 2 of the 5 mice which had the highest percentages of neutrophils (21% and 26%) in the BAL fluid. Subsequent sequencing of a portion of the ompA gene from this isolate demonstrated 100% homology with the published B. pseudohinzii sequence. We then selected 10 mice from the investigator's colony to determine the best test to screen for B. pseudohinzii in the facility. BAL was performed, the left lung lobe was collected for culture and PCR analysis, the right lung lobe and nasal passages were collected for histopathology, an oral swab was collected for culture, and an oral swab and fecal pellets were collected for PCR analysis. B. pseudohinzii was cultured from the oral cavity, lung, or both in 8 of the 10 mice analyzed. All 8 of these mice were fecal PCR positive for B. pseudohinzii; 7 had increased neutrophils (5% to 20%) in the BAL fluid, whereas the 8th mouse had a normal neutrophil percentage (2%). Active bronchopneumonia was not observed, but some infected mice had mild to moderate rhinitis. B. pseudohinzii appears to be a microbial agent of importance in mouse colonies that can confound pulmonary research. Commercial vendors and institutions should consider colony screening, routine reporting, and exclusion of B. pseudohinzii.


Asunto(s)
Infecciones por Bordetella/veterinaria , Enfermedades Pulmonares/complicaciones , Enfermedades de los Roedores/microbiología , Animales , Bordetella/efectos de los fármacos , Bordetella/genética , Bordetella/aislamiento & purificación , Infecciones por Bordetella/diagnóstico , Enfermedades Pulmonares/microbiología , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Enfermedades de los Roedores/diagnóstico
18.
Zebrafish ; 13 Suppl 1: S138-48, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26991393

RESUMEN

The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program.


Asunto(s)
Crianza de Animales Domésticos/métodos , Bienestar del Animal , Acuicultura/métodos , Vivienda para Animales , Pez Cebra , Animales , Enfermedades de los Peces/diagnóstico
19.
J Vet Diagn Invest ; 28(3): 338-44, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26951328

RESUMEN

The genus Edwardsiella is composed of a diverse group of facultative anaerobic, gram-negative bacteria that can produce disease in a wide variety of hosts, including birds, reptiles, mammals, and fish. Our report describes the isolation and identification of Edwardsiella piscicida associated with chronic mortality events in 2 separate captive largemouth bass (Micropterus salmoides) populations in New York and Florida. Wet-mount biopsies of skin mucus, gill, kidney, and spleen from several affected largemouth bass contained significant numbers of motile bacteria. Histologic examination revealed multifocal areas of necrosis scattered throughout the heart, liver, anterior kidney, posterior kidney, and spleen. Many of the necrotic foci were encapsulated or replaced by discrete granulomas and associated with colonies of gram-negative bacteria. Initial phenotypic and matrix-assisted laser desorption ionization-time of flight mass spectrometric analysis against existing spectral databases of recovered isolates identified these bacteria as Edwardsiella tarda Subsequent molecular analysis using repetitive sequence mediated and species-specific PCR, as well as 16S rRNA, rpoB, and gyrB sequences, classified these isolates as E. piscicida As a newly designated taxon, E. piscicida should be considered as a differential for multiorgan necrosis and granulomas in largemouth bass.


Asunto(s)
Lubina , Edwardsiella/aislamiento & purificación , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/epidemiología , Animales , Edwardsiella/genética , Infecciones por Enterobacteriaceae/epidemiología , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/microbiología , Florida/epidemiología , New York/epidemiología , Reacción en Cadena de la Polimerasa/veterinaria , ARN Ribosómico 16S/análisis , Especificidad de la Especie
20.
J Am Assoc Lab Anim Sci ; 54(6): 788-98, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26632790

RESUMEN

Despite the routine collection of oocytes from African clawed frogs (Xenopus laevis) for use in research, few studies have evaluated methods for preparing their skin for surgery. We evaluated 3 skin preparatory agents by examining their antibacterial efficacy and the gross and microscopic appearance of Xenopus skin after exposure. Frogs (n = 14) were sedated and treated (contact time, 10 min) with 0.9% sterile NaCl on one-half of the ventrum and with 0.5% povidone-iodine or 0.75% chlorhexidine on the other half. Bacterial cultures were obtained before and after skin treatment; bacteria were identified by mass spectrometry. To assess inflammation and degenerative changes, the incision sites were photographed and biopsied at 0, 1, and 7 d after surgery. We isolated at least 22 genera of bacteria from the skin of our frog population (mean ± SE, 5.21 ± 0.82 genera per frog). Iodine (2.00 ± 0.44 genera) and chlorhexidine (0.29 ± 0.76 genera) both had greater antimicrobial activity than did saline. Skin erythema did not correlate with treatment group. Histologic evidence of epidermal degeneration and necrosis was greater on days 1 and 7 after chlorhexidine treatment than after iodine or saline. In addition, frogs treated with chlorhexidine had a higher incidence of clinical illness associated with the exposure site. In summary, although chlorhexidine has adequate antimicrobial activity against organisms on X. laevis skin, it leads to skin damage and subsequent clinical complications. We therefore do not recommend chlorhexidine as a preoperative preparation agent in Xenopus.


Asunto(s)
Cuidados Preoperatorios/veterinaria , Piel/microbiología , Xenopus laevis , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Clorhexidina/administración & dosificación , Femenino , Povidona Yodada/administración & dosificación , Procedimientos Quirúrgicos Operativos/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...