Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 145(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378824

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disease caused by expansion of CAG repeats in the Huntingtin gene (HTT). Neither its pathogenic mechanisms nor the normal functions of HTT are well understood. To model HD in humans, we engineered a genetic allelic series of isogenic human embryonic stem cell (hESC) lines with graded increases in CAG repeat length. Neural differentiation of these lines unveiled a novel developmental HD phenotype: the appearance of giant multinucleated telencephalic neurons at an abundance directly proportional to CAG repeat length, generated by a chromosomal instability and failed cytokinesis over multiple rounds of DNA replication. We conclude that disrupted neurogenesis during development is an important, unrecognized aspect of HD pathogenesis. To address the function of normal HTT protein we generated HTT+/- and HTT-/- lines. Surprisingly, the same phenotype emerged in HTT-/- but not HTT+/- lines. We conclude that HD is a developmental disorder characterized by chromosomal instability that impairs neurogenesis, and that HD represents a genetic dominant-negative loss of function, contrary to the prevalent gain-of-toxic-function hypothesis. The consequences of developmental alterations should be considered as a new target for HD therapies.


Asunto(s)
Inestabilidad Cromosómica , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Neurogénesis/genética , Alelos , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Humanos , Proteína Huntingtina/deficiencia , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/etiología , Enfermedad de Huntington/patología , Modelos Biológicos , Fenotipo , Huso Acromático/patología , Expansión de Repetición de Trinucleótido
2.
Cell Rep ; 16(2): 545-558, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27373155

RESUMEN

Suboptimal axonal regeneration contributes to the consequences of nervous system trauma and neurodegenerative disease, but the intrinsic mechanisms that regulate axon growth remain unclear. We screened 50,400 small molecules for their ability to promote axon outgrowth on inhibitory substrata. The most potent hits were the statins, which stimulated growth of all mouse- and human-patient-derived neurons tested, both in vitro and in vivo, as did combined inhibition of the protein prenylation enzymes farnesyltransferase (PFT) and geranylgeranyl transferase I (PGGT-1). Compensatory sprouting of motor axons may delay clinical onset of amyotrophic lateral sclerosis (ALS). Accordingly, elevated levels of PGGT1B, which would be predicted to reduce sprouting, were found in motor neurons of early- versus late-onset ALS patients postmortem. The mevalonate-prenylation pathway therefore constitutes an endogenous brake on axonal growth, and its inhibition provides a potential therapeutic approach to accelerate neuronal regeneration in humans.


Asunto(s)
Neuritas/fisiología , Prenilación de Proteína , Esclerosis Amiotrófica Lateral/patología , Animales , Aumento de la Célula , Células Cultivadas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ácido Mevalónico/metabolismo , Ratones , Neuronas Motoras/fisiología , Regeneración Nerviosa
3.
Nature ; 533(7602): 251-4, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27144363

RESUMEN

Implantation of the blastocyst is a developmental milestone in mammalian embryonic development. At this time, a coordinated program of lineage diversification, cell-fate specification, and morphogenetic movements establishes the generation of extra-embryonic tissues and the embryo proper, and determines the conditions for successful pregnancy and gastrulation. Despite its basic and clinical importance, this process remains mysterious in humans. Here we report the use of a novel in vitro system to study the post-implantation development of the human embryo. We unveil the self-organizing abilities and autonomy of in vitro attached human embryos. We find human-specific molecular signatures of early cell lineage, timing, and architecture. Embryos display key landmarks of normal development, including epiblast expansion, lineage segregation, bi-laminar disc formation, amniotic and yolk sac cavitation, and trophoblast diversification. Our findings highlight the species-specificity of these developmental events and provide a new understanding of early human embryonic development beyond the blastocyst stage. In addition, our study establishes a new model system relevant to early human pregnancy loss. Finally, our work will also assist in the rational design of differentiation protocols of human embryonic stem cells to specific cell types for disease modelling and cell replacement therapy.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Amnios/citología , Amnios/embriología , Animales , Diferenciación Celular , Linaje de la Célula , Pérdida del Embrión/patología , Embrión de Mamíferos/anatomía & histología , Células Madre Embrionarias/citología , Células Madre Embrionarias/patología , Células Madre Embrionarias/trasplante , Estratos Germinativos/citología , Estratos Germinativos/embriología , Humanos , Técnicas In Vitro , Ratones , Modelos Biológicos , Especificidad de la Especie , Trofoblastos/citología , Saco Vitelino/citología , Saco Vitelino/embriología
4.
Cell Rep ; 12(2): 335-45, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26146077

RESUMEN

Neurodegenerative phenotypes reflect complex, time-dependent molecular processes whose elucidation may reveal neuronal class-specific therapeutic targets. The current focus in neurodegeneration has been on individual genes and pathways. In contrast, we assembled a genome-wide regulatory model (henceforth, "interactome"), whose unbiased interrogation revealed 23 candidate causal master regulators of neurodegeneration in an in vitro model of amyotrophic lateral sclerosis (ALS), characterized by a loss of spinal motor neurons (MNs). Of these, eight were confirmed as specific MN death drivers in our model of familial ALS, including NF-κB, which has long been considered a pro-survival factor. Through an extensive array of molecular, pharmacological, and biochemical approaches, we have confirmed that neuronal NF-κB drives the degeneration of MNs in both familial and sporadic models of ALS, thus providing proof of principle that regulatory network analysis is a valuable tool for studying cell-specific mechanisms of neurodegeneration.


Asunto(s)
Modelos Biológicos , Neuronas Motoras/metabolismo , FN-kappa B/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Apoptosis/efectos de los fármacos , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Mutación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos
5.
PLoS One ; 10(5): e0127687, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26010866

RESUMEN

Huntington's disease (HD) is a devastating neurological disorder that is caused by an expansion of the poly-Q tract in exon 1 of the Huntingtin gene (HTT). HTT is an evolutionarily conserved and ubiquitously expressed protein that has been linked to a variety of functions including transcriptional regulation, mitochondrial function, and vesicle transport. This large protein has numerous caspase and calpain cleavage sites and can be decorated with several post-translational modifications such as phosphorylations, acetylations, sumoylations, and palmitoylations. However, the exact function of HTT and the role played by its modifications in the cell are still not well understood. Scrutiny of HTT function has been focused on a single, full length mRNA. In this study, we report the discovery of 5 novel HTT mRNA splice isoforms that are expressed in normal and HTT-expanded human embryonic stem cell (hESC) lines as well as in cortical neurons differentiated from hESCs. Interestingly, none of the novel isoforms generates a truncated protein. Instead, 4 of the 5 new isoforms specifically eliminate domains and modifications to generate smaller HTT proteins. The fifth novel isoform incorporates a previously unreported additional exon, dubbed 41b, which is hominid-specific and introduces a potential phosphorylation site in the protein. The discovery of this hominid-specific isoform may shed light on human-specific pathogenic mechanisms of HTT, which could not be investigated with current mouse models of the disease.


Asunto(s)
Exones , Enfermedad de Huntington , Proteínas del Tejido Nervioso , Animales , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad de la Especie
6.
Cancer Res ; 74(20): 5914-24, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25164012

RESUMEN

The Hedgehog (Hh) signaling pathway regulates normal development and cell proliferation in metazoan organisms, but its aberrant activation can promote tumorigenesis. Hh-induced tumors arise from various tissues and they may be indolent or aggressive, as is the case with skin basal cell carcinoma (BCC) or cerebellar medulloblastoma, respectively. Little is known about common cell-intrinsic factors that control the development of such diverse Hh-dependent tumors. Transcription factor Zfx is required for the self-renewal of hematopoietic and embryonic stem cells, as well as for the propagation of acute myeloid and T-lymphoblastic leukemias. We report here that Zfx facilitates the development of experimental BCC and medulloblastoma in mice initiated by deletion of the Hh inhibitory receptor Ptch1. Simultaneous deletion of Zfx along with Ptch1 prevented BCC formation and delayed medulloblastoma development. In contrast, Zfx was dispensable for tumorigenesis in a mouse model of glioblastoma. We used genome-wide expression and chromatin-binding analysis in a human medulloblastoma cell line to characterize direct, evolutionarily conserved targets of Zfx, identifying Dis3L and Ube2j1 as two targets required for the growth of the human medulloblastoma cells. Our results establish Zfx as a common cell-intrinsic regulator of diverse Hh-induced tumors, with implications for the definition of new therapeutic targets in these malignancies.


Asunto(s)
Carcinogénesis/genética , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/fisiología , Animales , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Técnicas de Inactivación de Genes , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones Noqueados , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Ribonucleasas/metabolismo , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
PLoS One ; 8(7): e69208, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861962

RESUMEN

The Aicda gene encodes Activation-Induced cytidine Deaminase (AID), an enzyme essential for remodeling antibody genes in mature B lymphocytes. AID is also responsible for DNA damage at oncogenes, leading to their mutation and cancer-associated chromosome translocation in lymphoma. We used fate mapping and AID(GFP) reporter mice to determine if AID expression in the mouse extends beyond lymphocytes. We discovered that AID(cre) tags a small fraction of non-lymphoid cells starting at 10.5 days post conception (dpc), and that AID(GFP+) cells are detectable at dpc 11.5 and 12.5. Embryonic cells are tagged by AID(cre) in the submandibular region, where conditional deletion of the tumor suppressor PTEN causes squamous papillomas. AID(cre) also tags non-lymphoid cells in the embryonic central nervous system. Finally, in the adult mouse brain, AID(cre) marks a small fraction of diverse neurons and distinct neuronal populations, including pyramidal cells in cortical layer IV.


Asunto(s)
Linaje de la Célula , Citidina Desaminasa/metabolismo , Linfocitos/citología , Linfocitos/enzimología , Envejecimiento/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/patología , Desarrollo Embrionario , Integrasas/metabolismo , Ratones , Fosfohidrolasa PTEN/metabolismo , Papiloma/patología , Piel/metabolismo
8.
J Neurosci ; 33(2): 574-86, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303937

RESUMEN

Human pluripotent stem cells are a promising source of differentiated cells for developmental studies, cell transplantation, disease modeling, and drug testing. However, their widespread use even for intensely studied cell types like spinal motor neurons is hindered by the long duration and low yields of existing protocols for in vitro differentiation and by the molecular heterogeneity of the populations generated. We report a combination of small molecules that within 3 weeks induce motor neurons at up to 50% abundance and with defined subtype identities of relevance to neurodegenerative disease. Despite their accelerated differentiation, motor neurons expressed combinations of HB9, ISL1, and column-specific markers that mirror those observed in vivo in human embryonic spinal cord. They also exhibited spontaneous and induced activity, and projected axons toward muscles when grafted into developing chick spinal cord. Strikingly, this novel protocol preferentially generates motor neurons expressing markers of limb-innervating lateral motor column motor neurons (FOXP1(+)/LHX3(-)). Access to high-yield cultures of human limb-innervating motor neuron subtypes will facilitate in-depth study of motor neuron subtype-specific properties, disease modeling, and development of large-scale cell-based screening assays.


Asunto(s)
Extremidades/inervación , Neuronas Motoras/fisiología , Células-Madre Neurales/fisiología , Animales , Axones/fisiología , Calcio/fisiología , Señalización del Calcio/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Embrión de Pollo , ADN Complementario/biosíntesis , ADN Complementario/genética , Femenino , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/genética , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Proteínas con Homeodominio LIM/genética , Masculino , Ratones , Neuronas Motoras/metabolismo , Células-Madre Neurales/metabolismo , Técnicas de Placa-Clamp , Complejo Silenciador Inducido por ARN , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Médula Espinal/citología , Médula Espinal/embriología , Trasplante de Células Madre/métodos , Factores de Transcripción/genética
9.
PLoS One ; 7(7): e40154, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22802953

RESUMEN

Our understanding of motor neuron biology in humans is derived mainly from investigation of human postmortem tissue and more indirectly from live animal models such as rodents. Thus generation of motor neurons from human embryonic stem cells and human induced pluripotent stem cells is an important new approach to model motor neuron function. To be useful models of human motor neuron function, cells generated in vitro should develop mature properties that are the hallmarks of motor neurons in vivo such as elaborated neuronal processes and mature electrophysiological characteristics. Here we have investigated changes in morphological and electrophysiological properties associated with maturation of neurons differentiated from human embryonic stem cells expressing GFP driven by a motor neuron specific reporter (Hb9::GFP) in culture. We observed maturation in cellular morphology seen as more complex neurite outgrowth and increased soma area over time. Electrophysiological changes included decreasing input resistance and increasing action potential firing frequency over 13 days in vitro. Furthermore, these human embryonic stem cell derived motor neurons acquired two physiological characteristics that are thought to underpin motor neuron integrated function in motor circuits; spike frequency adaptation and rebound action potential firing. These findings show that human embryonic stem cell derived motor neurons develop functional characteristics typical of spinal motor neurons in vivo and suggest that they are a relevant and useful platform for studying motor neuron development and function and for modeling motor neuron diseases.


Asunto(s)
Potenciales de Acción/fisiología , Células Madre Embrionarias/citología , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Neurogénesis , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Factores de Transcripción/fisiología
10.
Cell ; 144(3): 439-52, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295703

RESUMEN

The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/fisiología , Perfilación de la Expresión Génica/normas , Células Madre Pluripotentes Inducidas/fisiología , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología
11.
Nat Biotechnol ; 29(3): 279-86, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21293464

RESUMEN

Human induced pluripotent stem cells (iPSCs) present exciting opportunities for studying development and for in vitro disease modeling. However, reported variability in the behavior of iPSCs has called their utility into question. We established a test set of 16 iPSC lines from seven individuals of varying age, sex and health status, and extensively characterized the lines with respect to pluripotency and the ability to terminally differentiate. Under standardized procedures in two independent laboratories, 13 of the iPSC lines gave rise to functional motor neurons with a range of efficiencies similar to that of human embryonic stem cells (ESCs). Although three iPSC lines were resistant to neural differentiation, early neuralization rescued their performance. Therefore, all 16 iPSC lines passed a stringent test of differentiation capacity despite variations in karyotype and in the expression of early pluripotency markers and transgenes. This iPSC and ESC test set is a robust resource for those interested in the basic biology of stem cells and their applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Fibroblastos/citología , Células Madre Pluripotentes/citología , Piel/citología , Ingeniería de Tejidos/métodos , Diferenciación Celular , Células Cultivadas , Humanos
12.
Science ; 321(5893): 1218-21, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18669821

RESUMEN

The generation of pluripotent stem cells from an individual patient would enable the large-scale production of the cell types affected by that patient's disease. These cells could in turn be used for disease modeling, drug discovery, and eventually autologous cell replacement therapies. Although recent studies have demonstrated the reprogramming of human fibroblasts to a pluripotent state, it remains unclear whether these induced pluripotent stem (iPS) cells can be produced directly from elderly patients with chronic disease. We have generated iPS cells from an 82-year-old woman diagnosed with a familial form of amyotrophic lateral sclerosis (ALS). These patient-specific iPS cells possess properties of embryonic stem cells and were successfully directed to differentiate into motor neurons, the cell type destroyed in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Diferenciación Celular , Reprogramación Celular , Fibroblastos/citología , Neuronas Motoras/citología , Células Madre Pluripotentes/citología , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Línea Celular , Células Madre Embrionarias/citología , Femenino , Expresión Génica , Humanos , Neuronas Motoras/metabolismo , Neuroglía/citología , Retroviridae/genética , Médula Espinal/citología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA