Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Exp Parasitol ; 257: 108687, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38114040

RESUMEN

OBJECTIVES: Post-kala-azar-dermal leishmaniasis (PKDL) is an infectious skin disease that occurs as sequela of visceral leishmaniasis (VL) and causes cutaneous lesions on the face and other exposed body parts. While the first-line drug miltefosine is typically used for 28 days to treat VL, 12 weeks of therapy is required for PKDL, highlighting the need to evaluate the extent of drug penetration at the dermal site of infection. In this proof-of-concept study, we demonstrate the use of a minimally invasive sampling technique called microdialysis to measure dermal drug exposure in a PKDL patient, providing a tool for the optimization of treatment regimens. METHODS AND MATERIALS: One PKDL patient receiving treatment with miltefosine (50 mg twice daily for 12 weeks) was recruited to this proof-of-concept study and consented to undergo dermal microdialysis. Briefly, a µDialysis Linear Catheter 66 for skin and muscle, a probe with a semi-permeable membrane, was inserted in the dermis. A perfusate (a drug-free physiological solution) was pumped through the probe at a low flow rate, allowing miltefosine present in the dermis to cross the membrane and be collected in the dialysates over time. Protein-free (dialysates) and total (blood and skin biopsies) drug concentrations were analysed using LC-MS/MS. RESULTS: and conclusions: Using microdialysis, protein-free miltefosine drug concentrations could be detected in the infected dermis over time (Cmax ≈ 450 ng/ml). This clinical proof-of-concept study thus illustrates the potential of dermal microdialysis as a minimally invasive alternative to invasive skin biopsies to quantify drug concentrations directly at the pharmacological site of action in PKDL.


Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Leishmaniasis Visceral , Fosforilcolina/análogos & derivados , Humanos , Leishmaniasis Visceral/complicaciones , Leishmaniasis Visceral/tratamiento farmacológico , Cromatografía Liquida , Microdiálisis/efectos adversos , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/etiología , Antiprotozoarios/uso terapéutico , Espectrometría de Masas en Tándem , Soluciones para Diálisis/uso terapéutico
2.
J Antimicrob Chemother ; 78(7): 1723-1731, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37229566

RESUMEN

OBJECTIVES: Cutaneous leishmaniasis (CL) is a neglected tropical disease causing a range of skin lesions for which safe and efficacious drugs are lacking. Oleylphosphocholine (OLPC) is structurally similar to miltefosine and has previously demonstrated potent activity against visceral leishmaniasis. We here present the in vitro and in vivo efficacy of OLPC against CL-causing Leishmania species. METHODS: The antileishmanial activities of OLPC were evaluated and compared with miltefosine in vitro against intracellular amastigotes of seven CL-causing species. Following the confirmation of significant in vitro activity, the performance of the maximum tolerated dose of OLPC was evaluated in an experimental murine model of CL followed by a dose-response titration and the efficacy evaluation of four OLPC formulations (two with a fast-release and two with a slow-release profile) using bioluminescent Leishmania major parasites. RESULTS: OLPC demonstrated potent in vitro activity of the same order as miltefosine in the intracellular macrophage model against a range of CL-causing species. A dose of 35 mg of OLPC/kg/day administered orally for 10 days was well-tolerated and able to reduce the parasite load in the skin of L. major-infected mice to a similar extent as the positive control paromomycin (50 mg/kg/day, intraperitoneally) in both in vivo studies. Reducing the dose of OLPC resulted in inactivity and modifying the release profile using mesoporous silica nanoparticles led to a decrease in activity when solvent-based loading was used in contrast to extrusion-based loading, which had no impact on its antileishmanial efficacy. CONCLUSIONS: Together, these data suggest that OLPC could be a promising alternative to miltefosine treatment for CL. Further investigations exploring experimental models with additional Leishmania species and skin pharmacokinetic and dynamic analyses are required.


Asunto(s)
Antiprotozoarios , Leishmania major , Leishmaniasis Cutánea , Leishmaniasis Visceral , Ratones , Animales , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Antiprotozoarios/uso terapéutico , Fosforilcolina/uso terapéutico , Leishmaniasis Visceral/tratamiento farmacológico , Ratones Endogámicos BALB C
3.
PLOS Glob Public Health ; 2(11): e0001049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962829

RESUMEN

As India comes closer to the elimination of visceral leishmaniasis (VL) as a public health problem, surveillance efforts and elimination targets must be continuously revised and strengthened. Mathematical modelling is a compelling research discipline for informing policy and programme design in its capacity to project incidence across space and time, the likelihood of achieving benchmarks, and the impact of different interventions. To gauge the extent to which modelling informs policy in India, this qualitative analysis explores how and whether policy makers understand, value, and reference recently produced VL modelling research. Sixteen semi-structured interviews were carried out with both users- and producers- of VL modelling research, guided by a knowledge utilisation framework grounded in knowledge translation theory. Participants reported that barriers to knowledge utilisation include 1) scepticism that models accurately reflect transmission dynamics, 2) failure of modellers to apply their analyses to specific programme operations, and 3) lack of accountability in the process of translating knowledge to policy. Political trust and support are needed to translate knowledge into programme activities, and employment of a communication intermediary may be a necessary approach to improve this process.

4.
Nat Prod Rep ; 38(12): 2214-2235, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913053

RESUMEN

Covering: 2000 up to 2021Natural products are an important resource in drug discovery, directly or indirectly delivering numerous small molecules for potential development as human medicines. Among the many classes of natural products, alkaloids have a rich history of therapeutic applications. The extensive chemodiversity of alkaloids found in the marine environment has attracted considerable attention for such uses, while the scarcity of these natural materials has stimulated efforts towards their total synthesis. This review focuses on the biological activity of marine alkaloids (covering 2000 to up to 2021) towards Neglected Tropical Diseases (NTDs) caused by protozoan parasites, and malaria. Chemotherapy represents the only form of treatment for Chagas disease, human African trypanosomiasis, leishmaniasis and malaria, but there is currently a restricted arsenal of drugs, which often elicit severe adverse effects, show variable efficacy or resistance, or are costly. Natural product scaffolds have re-emerged as a focus of academic drug discovery programmes, offering a different resource to discover new chemical entities with new modes of action. In this review, the potential of a range of marine alkaloids is analyzed, accompanied by coverage of synthetic efforts that enable further studies of key antiprotozoal natural product scaffolds.


Asunto(s)
Alcaloides/uso terapéutico , Antiprotozoarios/uso terapéutico , Organismos Acuáticos/química , Productos Biológicos/uso terapéutico , Malaria/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Infecciones por Protozoos/tratamiento farmacológico , Antiprotozoarios/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Estructura Molecular
5.
RSC Med Chem ; 12(4): 472-482, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34041488

RESUMEN

Pharmacological efficacy is obtained when adequate concentrations of a potent drug reach the target site. In cutaneous leishmaniasis, a heterogeneous disease characterised by a variety of skin manifestations from simple nodules, skin discoloration, plaques to extensive disseminated forms, the parasites are found in the dermal layers of the skin. Treatment thus involves the release of the active compound from the formulation (administered either topically or systemically), it's permeation into the skin, accumulation by the local macrophages and further transport into the phagolysosome of the macrophage. The pharmacodynamic activity of a drug against the parasite is relatively straight forward to evaluate both in vivo and in vitro. The pharmacokinetic processes taking place inside the skin are more complex to elucidate due to the multi-lamellar structure of the skin, heterogeneous distribution of drugs within the tissue, the difficulty of accessing the site of infection complicating sampling and the lack of surrogate markers reflecting the activity of a drug in the skin. This review will discuss the difficulties encountered when investigating drug distribution, PK PD relationships and efficacy in the skin with a focus on cutaneous leishmaniasis treatment.

6.
PLoS Negl Trop Dis ; 15(4): e0009276, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857146

RESUMEN

BACKGROUND: Human African trypanosomiasis (HAT or sleeping sickness) is caused by the parasite Trypanosoma brucei sspp. The disease has two stages, a haemolymphatic stage after the bite of an infected tsetse fly, followed by a central nervous system stage where the parasite penetrates the brain, causing death if untreated. Treatment is stage-specific, due to the blood-brain barrier, with less toxic drugs such as pentamidine used to treat stage 1. The objective of our research programme was to develop an intravenous formulation of pentamidine which increases CNS exposure by some 10-100 fold, leading to efficacy against a model of stage 2 HAT. This target candidate profile is in line with drugs for neglected diseases inititative recommendations. METHODOLOGY: To do this, we evaluated the physicochemical and structural characteristics of formulations of pentamidine with Pluronic micelles (triblock-copolymers of polyethylene-oxide and polypropylene oxide), selected candidates for efficacy and toxicity evaluation in vitro, quantified pentamidine CNS delivery of a sub-set of formulations in vitro and in vivo, and progressed one pentamidine-Pluronic formulation for further evaluation using an in vivo single dose brain penetration study. PRINCIPAL FINDINGS: Screening pentamidine against 40 CNS targets did not reveal any major neurotoxicity concerns, however, pentamidine had a high affinity for the imidazoline2 receptor. The reduction in insulin secretion in MIN6 ß-cells by pentamidine may be secondary to pentamidine-mediated activation of ß-cell imidazoline receptors and impairment of cell viability. Pluronic F68 (0.01%w/v)-pentamidine formulation had a similar inhibitory effect on insulin secretion as pentamidine alone and an additive trypanocidal effect in vitro. However, all Pluronics tested (P85, P105 and F68) did not significantly enhance brain exposure of pentamidine. SIGNIFICANCE: These results are relevant to further developing block-copolymers as nanocarriers, improving BBB drug penetration and understanding the side effects of pentamidine.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Pentamidina/farmacocinética , Tripanocidas/farmacocinética , Tripanosomiasis Africana/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Enfermedades Desatendidas/tratamiento farmacológico , Pentamidina/uso terapéutico , Tripanocidas/uso terapéutico , Trypanosoma brucei gambiense , Trypanosoma brucei rhodesiense , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/tratamiento farmacológico , Moscas Tse-Tse/parasitología
7.
Pharmaceutics ; 13(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918099

RESUMEN

In cutaneous leishmaniasis (CL), parasites reside in the dermis, creating an opportunity for local drug administration potentially reducing adverse effects and improving treatment adherence compared to current therapies. Polymeric film-forming systems (FFSs) are directly applied to the skin and form a thin film as the solvent evaporates. In contrast to conventional topical dosage forms, FFSs strongly adhere to the skin, favouring sustained drug delivery to the affected site, reducing the need for frequent applications, and enhancing patient compliance. This study reports the first investigation of the use of film-forming systems for the delivery of DNDI-0690, a nitroimidazole compound with potent activity against CL-causing Leishmania species. A total of seven polymers with or without plasticiser were evaluated for drying time, stickiness, film-flexibility, and cosmetic attributes; three FFSs yielded a positive evaluation for all test parameters. The impact of each of these FFSs on the permeation of the model skin permeant hydrocortisone (hydrocortisone, 1% (w/v) across the Strat-M membrane was evaluated, and the formulations resulting in the highest and lowest permeation flux (Klucel LF with triethyl citrate and Eudragit RS with dibutyl sebacate, respectively) were selected as the FFS vehicle for DNDI-0690. The release and skin distribution of the drug upon application to Leishmania-infected and uninfected BALB/c mouse skin were examined using Franz diffusion cells followed by an evaluation of the efficacy of both DNDI-0690 FFSs (1% (w/v)) in an experimental CL model. Whereas the Eudragit film resulted in a higher permeation of DNDI-0690, the Klucel film was able to deposit four times more drug into the skin, where the parasite resides. Of the FFSs formulations, only the Eudragit system resulted in a reduced parasite load, but not reduced lesion size, when compared to the vehicle only control. Whereas drug delivery into the skin was successfully modulated using different FFS systems, the FFS systems selected were not effective for the topical application of DNDI-0690. The convenience and aesthetic of FFS systems alongside their ability to modulate drug delivery to and into the skin merit further investigation using other promising antileishmanial drugs.

8.
PLoS Negl Trop Dis ; 15(3): e0009013, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651812

RESUMEN

BACKGROUND: There is a continued need to develop effective and safe treatments for visceral leishmaniasis (VL). Preclinical studies on pharmacokinetics and pharmacodynamics of anti-infective agents, such as anti-bacterials and anti-fungals, have provided valuable information in the development and dosing of these agents. The aim of this study was to characterise the pharmacokinetic and pharmacodynamic properties of the anti-leishmanial drugs AmBisome and miltefosine in a preclinical disease model of VL. METHODOLOGY / PRINCIPAL FINDINGS: BALB/c mice were infected with L. donovani (MHOM/ET/67/HU3) amastigotes. Groups of mice were treated with miltefosine (orally, multi-dose regimen) or AmBisome (intravenously, single dose regimen) or left untreated as control groups. At set time points groups of mice were killed and plasma, livers and spleens harvested. For pharmacodynamics the hepatic parasite burden was determined microscopically from tissue impression smears. For pharmacokinetics drug concentrations were measured in plasma and whole tissue homogenates by LC-MS. Unbound drug concentrations were determined by rapid equilibrium dialysis. Doses exerting maximum anti-leishmanial effects were 40 mg/kg for AmBisome and 150 mg/kg (cumulatively) for miltefosine. AmBisome displayed a wider therapeutic range than miltefosine. Dose fractionation at a total dose of 2.5 mg/kg pointed towards concentration-dependent anti-leishmanial activity of AmBisome, favouring the administration of large doses infrequently. Protein binding was >99% for miltefosine and amphotericin B in plasma and tissue homogenates. CONCLUSION / SIGNIFICANCE: Using a PK/PD approach we propose optimal dosing strategies for AmBisome. Additionally, we describe pharmacokinetic and pharmacodynamic properties of miltefosine and compare our findings in a preclinical disease model to available knowledge from studies in humans. This approach also presents a strategy for improved use of animal models in the drug development process for VL.


Asunto(s)
Anfotericina B/farmacocinética , Antiprotozoarios/farmacocinética , Leishmaniasis Visceral/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Anfotericina B/uso terapéutico , Animales , Antiprotozoarios/uso terapéutico , Quimioterapia Combinada , Proteínas de Homeodominio/genética , Humanos , Hígado/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Carga de Parásitos , Fosforilcolina/farmacocinética , Fosforilcolina/uso terapéutico , Unión Proteica/fisiología
9.
PLoS Negl Trop Dis ; 15(2): e0009129, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33534836

RESUMEN

BACKGROUND: Effective case identification strategies are fundamental to capturing the remaining visceral leishmaniasis (VL) cases in India. To inform government strategies to reach and sustain elimination benchmarks, this study presents costs of active- and passive- case detection (ACD and PCD) strategies used in India's most VL-endemic state, Bihar, with a focus on programme outcomes stratified by district-level incidence. METHODS: Expenditure analysis was complemented by onsite micro-costing to compare the cost of PCD in hospitals alongside index case-based ACD and a combination of blanket (house-to-house) and camp ACD from January to December 2018. From the provider's perspective, a cost analysis evaluated the overall programme cost of each activity, the cost per case detected, and the cost of scaling up ACD. RESULTS: During 2018, index case-based ACD, blanket and camp ACD, and PCD reported 1,497, 131, and 1,983 VL-positive cases at a unit cost of $522.81, $4,186.81, and $246.79, respectively. In high endemic districts, more VL cases were identified through PCD while in meso- and low-endemic districts more cases were identified through ACD. The cost of scaling up ACD to identify 3,000 additional cases ranged from $1.6-4 million, depending on the extent to which blanket and camp ACD was relied upon. CONCLUSION: Cost per VL test conducted (rather than VL-positive case identified) may be a better metric estimating unit costs to scale up ACD in Bihar. As more VL cases were identified in meso-and low-endemic districts through ACD than PCD, health authorities in India should consider bolstering ACD in these areas. Blanket and camp ACD identified fewer cases at a higher unit cost than index case-based ACD. However, the value of detecting additional VL cases early outweighs long-term costs for reaching and sustaining VL elimination benchmarks in India.


Asunto(s)
Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/epidemiología , Costo de Enfermedad , Erradicación de la Enfermedad , Enfermedades Endémicas , Humanos , Incidencia , India/epidemiología , Leishmaniasis Visceral/economía
10.
Molecules ; 25(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916994

RESUMEN

The control of leishmaniases, a complex parasitic disease caused by the protozoan parasite Leishmania, requires continuous innovation at the therapeutic and vaccination levels. Chitosan is a biocompatible polymer administrable via different routes and possessing numerous qualities to be used in the antileishmanial strategies. This review presents recent progress in chitosan research for antileishmanial applications. First data on the mechanism of action of chitosan revealed an optimal in vitro intrinsic activity at acidic pH, high-molecular-weight chitosan being the most efficient form, with an uptake by pinocytosis and an accumulation in the parasitophorous vacuole of Leishmania-infected macrophages. In addition, the immunomodulatory effect of chitosan is an added value both for the treatment of leishmaniasis and the development of innovative vaccines. The advances in chitosan chemistry allows pharmacomodulation on amine groups opening various opportunities for new polymers of different size, and physico-chemical properties adapted to the chosen routes of administration. Different formulations have been studied in experimental leishmaniasis models to cure visceral and cutaneous leishmaniasis, and chitosan can act as a booster through drug combinations with classical drugs, such as amphotericin B. The various architectural possibilities given by chitosan chemistry and pharmaceutical technology pave the way for promising further developments.


Asunto(s)
Antiprotozoarios/administración & dosificación , Quitosano/química , Portadores de Fármacos/química , Vacunas contra la Leishmaniasis/administración & dosificación , Leishmaniasis/tratamiento farmacológico , Anfotericina B/química , Anfotericina B/farmacología , Animales , Antimonio/química , Antiprotozoarios/farmacología , Materiales Biocompatibles/química , Curcumina/química , Composición de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Vacunas contra la Leishmaniasis/química , Macrófagos/efectos de los fármacos , Nanopartículas/química , Paromomicina/química , Triterpenos Pentacíclicos/química , Polímeros/química , Rifampin/química , Selenio/química , Tiomalatos/química , Titanio/química , Triterpenos/química , Ácido Betulínico , Ácido Ursólico
11.
PLoS One ; 15(9): e0238429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32946480

RESUMEN

Wild boar and feral swine number and range are increasing worldwide in parallel with their impact on biodiversity and human activities. The ecological and economic impact of this species include spread of diseases, vehicle collisions, damage to crops, amenities and infrastructures and reduction in plant and animal abundance and richness. As traditional methods such as culling have not contained the growth and spread of wild boar and feral pigs, alternative methods such as fertility control are now advocated. We used empirical data on two isolated wild boar populations to model and compare the effects of different regimes of culling and fertility control on population trends. We built a Bayesian population model and applied it to explore the implications for population control of various management options combining culling and/or contraception. The results showed that, whilst fertility control on its own was not sufficient to achieve the target reduction in wild boar number, adding fertility control to culling was more effective than culling alone. In particular, using contraceptives on 40% of the population to complement the culling of 60% of the animals, halved the time to achieve our target reduction compared with culling only. We conclude that, assuming the effort of adding fertility control to culling was found to be cost-effective in terms of population reduction, these two methods should be used simultaneously if a rapid decrease in wild boar number is required for a closed population.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Anticoncepción/métodos , Regulación de la Población/métodos , Sacrificio de Animales/métodos , Animales , Animales Salvajes , Teorema de Bayes , Estudios Retrospectivos , Sus scrofa , Porcinos
12.
Molecules ; 25(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887341

RESUMEN

Chitosan nanoparticles have gained attention as drug delivery systems (DDS) in the medical field as they are both biodegradable and biocompatible with reported antimicrobial and anti-leishmanial activities. We investigated the application of chitosan nanoparticles as a DDS for the treatment of cutaneous leishmaniasis (CL) by preparing two types of chitosan nanoparticles: positively charged with tripolyphosphate sodium (TPP) and negatively charged with dextran sulphate. Amphotericin B (AmB) was incorporated into these nanoparticles. Both types of AmB-loaded nanoparticles demonstrated in vitro activity against Leishmania major intracellular amastigotes, with similar activity to unencapsulated AmB, but with a significant lower toxicity to KB-cells and red blood cells. In murine models of CL caused by L. major, intravenous administration of AmB-loaded chitosan-TPP nanoparticles (Size = 69 ± 8 nm, Zeta potential = 25.5 ± 1 mV, 5 mg/kg/for 10 days on alternate days) showed a significantly higher efficacy than AmBisome® (10 mg/kg/for 10 days on alternate days) in terms of reduction of lesion size and parasite load (measured by both bioluminescence and qPCR). Poor drug permeation into and through mouse skin, using Franz diffusion cells, showed that AmB-loaded chitosan nanoparticles are not appropriate candidates for topical treatment of CL.


Asunto(s)
Anfotericina B/uso terapéutico , Quitosano/química , Leishmaniasis Cutánea/tratamiento farmacológico , Nanopartículas/química , Administración Tópica , Anfotericina B/administración & dosificación , Anfotericina B/farmacocinética , Anfotericina B/farmacología , Animales , Antiprotozoarios/administración & dosificación , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Modelos Animales de Enfermedad , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Leishmania major , Leishmaniasis Cutánea/parasitología , Ratones Endogámicos BALB C , Parásitos/efectos de los fármacos , Permeabilidad , Piel/efectos de los fármacos , Piel/parasitología , Piel/patología
13.
Microorganisms ; 8(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492796

RESUMEN

The discovery of novel anti-leishmanial compounds remains essential as current treatments have known limitations and there are insufficient novel compounds in development. We have investigated three complex and physiologically relevant in vitro assays, including: (i) a media perfusion based cell culture model, (ii) two 3D cell culture models, and (iii) iPSC derived macrophages in place of primary macrophages or cell lines, to determine whether they offer improved approaches to anti-leishmanial drug discovery and development. Using a Leishmania major amastigote-macrophage assay the activities of standard drugs were investigated to show the effect of changing parameters in these assays. We determined that drug activity was reduced by media perfusion (EC50 values for amphotericin B shifted from 54 (51-57) nM in the static system to 70 (61-75) nM under media perfusion; EC50 values for miltefosine shifted from 12 (11-15) µM in the static system to 30 (26-34) µM under media perfusion) (mean and 95% confidence intervals), with corresponding reduced drug accumulation by macrophages. In the 3D cell culture model there was a significant difference in the EC50 values of amphotericin B but not miltefosine (EC50 values for amphotericin B were 34.9 (31.4-38.6) nM in the 2D and 52.3 (46.6-58.7) nM in 3D; EC50 values for miltefosine were 5.0 (4.9-5.2) µM in 2D and 5.9 (5.5-6.2) µM in 3D (mean and 95% confidence intervals). Finally, in experiments using iPSC derived macrophages infected with Leishmania, reported here for the first time, we observed a higher level of intracellular infection in iPSC derived macrophages compared to the other macrophage types for four different species of Leishmania studied. For L. major with an initial infection ratio of 0.5 parasites per host cell the percentage infection level of the macrophages after 72 h was 11.3% ± 1.5%, 46.0% ± 1.4%, 66.4% ± 3.5% and 75.1% ± 2.4% (average ± SD) for the four cells types, THP1 a human monocytic cell line, mouse bone marrow macrophages (MBMMs), human bone marrow macrophages (HBMMs) and iPSC derived macrophages respectively. Despite the higher infection levels, drug activity in iPSC derived macrophages was similar to that in other macrophage types, for example, amphotericin B EC50 values were 35.9 (33.4-38.5), 33.5 (31.5-36.5), 33.6 (30.5-not calculated (NC)) and 46.4 (45.8-47.2) nM in iPSC, MBMMs, HBMMs and THP1 cells respectively (mean and 95% confidence intervals). We conclude that increasing the complexity of cellular assays does impact upon anti-leishmanial drug activities but not sufficiently to replace the current model used in HTS/HCS assays in drug discovery programmes. The impact of media perfusion on drug activities and the use of iPSC macrophages do, however, deserve further investigation.

14.
Front Vet Sci ; 7: 154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322589

RESUMEN

African swine fever (ASF) is a highly contagious disease affecting all suids including wild boar. As the disease can damage commercial pig production and its circulation can threaten international trade, understanding the risks produced by free-living wild boar (as a wildlife reservoir) is important to ensure proportionate policies to exclude the disease, as well as an effective contingency response. The recent spread of the virus into Western Europe has produced concerns in many stakeholders including pig producers and national governments. Unlike in mainland Europe, where wild boar are widespread, in Britain, free-living populations have only recently re-established, and whilst these are still relatively small and isolated, they may provide a sufficient reservoir capable of sustaining disease and may thus present a continual source of infection risk to domestic pigs. This study focuses on one component of the risk produced by wild boar, specifically the distribution and persistence of virus in a landscape produced by the natural circulation of disease within wild boar. We used a spatial individual-based model run across a representation of a real landscape to explore the epidemiological consequences of an introduction of ASF into the Forest of Dean, currently hosting the largest population of wild boar in England. We explore various scenarios including variations in the prophylactic management of boar, as well as variations in reactive management (contingency response) following the detection of disease to evaluate their value in reducing this specific risk (presence of ASF virus of wild boar origin in the landscape). The abundance and distribution of wild boar is predicted to increase across our study extent over the next 20 years. Outbreaks of ASF are not predicted to be self-sustaining, with the median time to disease "burn-out" (no new infections) being 14 weeks. Carcass removal, as a tool in a package of reactive management, was of limited value in reducing the duration of outbreaks in this study. We suggest that useful predictions of some of the risks produced by ASF might be possible using only the distribution of the boar, rather than more difficult abundance or density measures.

15.
Semin Immunopathol ; 42(3): 247-264, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32152715

RESUMEN

Leishmaniasis is a disease complex caused by 20 species of protozoan parasites belonging to the genus Leishmania. In humans, it has two main clinical forms, visceral leishmaniasis (VL) and cutaneous or tegumentary leishmaniasis (CL), as well as several other cutaneous manifestations in a minority of cases. In the mammalian host Leishmania parasites infect different populations of macrophages where they multiply and survive in the phagolysosomal compartment. The progression of both VL and CL depends on the maintenance of a parasite-specific immunosuppressive state based around this host macrophage infection. The complexity and variation of immune responses and immunopathology in humans and the different host interactions of the different Leishmania species has an impact upon the effectiveness of vaccines, diagnostics and drugs.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Leishmaniasis Visceral , Leishmaniasis , Preparaciones Farmacéuticas , Vacunas , Animales , Humanos , Leishmaniasis/diagnóstico
16.
Biotechniques ; 68(2): 79-84, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31774301

RESUMEN

The aim of this study was to assess pathogen DNA extraction with a new spin column-based method (DNA-XT). DNA from either whole-blood samples spiked with Plasmodium falciparum or Leishmania donovani amastigote culture was extracted with DNA-XT and compared with that produced by a commercial extraction kit (DNeasy®). Eluates from large and small sample volumes were assessed by PCR and spectroscopy. Using a small volume (5 µl) of blood, the DNA-XT and DNeasy methods produced eluates with similar DNA concentrations (0.63 vs 1.06 ng/µl, respectively). The DNA-XT method produced DNA with lower PCR inhibition than DNeasy. The new technique was also twice as fast and required fewer plastics and manipulations but had reduced total recovered DNA compared with DNeasy.


Asunto(s)
ADN Protozoario/sangre , Leishmania donovani/aislamiento & purificación , Plasmodium falciparum/aislamiento & purificación , ADN Protozoario/aislamiento & purificación , Genoma de Protozoos , Humanos
17.
Artículo en Inglés | MEDLINE | ID: mdl-31871082

RESUMEN

There is an urgent need for safe, efficacious, affordable, and field-adapted drugs for the treatment of cutaneous leishmaniasis, which newly affects around 1.5 million people worldwide annually. Chitosan, a biodegradable cationic polysaccharide, has previously been reported to have antimicrobial, antileishmanial, and immunostimulatory activities. We investigated the in vitro activity of chitosan and several of its derivatives and showed that the pH of the culture medium plays a critical role in antileishmanial activity of chitosan against both extracellular promastigotes and intracellular amastigotes of Leishmania major and Leishmania mexicana Chitosan and its derivatives were approximately 7 to 20 times more active at pH 6.5 than at pH 7.5, with high-molecular-weight chitosan being the most potent. High-molecular-weight chitosan stimulated the production of nitric oxide and reactive oxygen species by uninfected and Leishmania-infected macrophages in a time- and dose-dependent manner at pH 6.5. Despite the in vitro activation of bone marrow macrophages by chitosan to produce nitric oxide and reactive oxygen species, we showed that the antileishmanial activity of chitosan was not mediated by these metabolites. Finally, we showed that rhodamine-labeled chitosan is taken up by pinocytosis and accumulates in the parasitophorous vacuole of Leishmania-infected macrophages.


Asunto(s)
Antiprotozoarios/farmacología , Quitosano/farmacología , Leishmania major/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos , Anfotericina B/farmacología , Animales , Quitosano/análogos & derivados , Medios de Cultivo/química , Medios de Cultivo/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Concentración de Iones de Hidrógeno , Leishmania major/inmunología , Leishmania major/metabolismo , Leishmania mexicana/inmunología , Leishmania mexicana/metabolismo , Estadios del Ciclo de Vida/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/parasitología , Ratones , Ratones Endogámicos BALB C , Peso Molecular , Óxido Nítrico/metabolismo , Pruebas de Sensibilidad Parasitaria , Pinocitosis/efectos de los fármacos , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Factor de Necrosis Tumoral alfa/biosíntesis
18.
PLoS One ; 14(12): e0225250, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31869335

RESUMEN

Vector borne diseases are a continuing global threat to both human and animal health. The ability of vectors such as mosquitos to cover large distances and cross country borders undetected provide an ever-present threat of pathogen spread. Many diseases can infect multiple vector species, such that even if the climate is not hospitable for an invasive species, indigenous species may be susceptible and capable of transmission such that one incursion event could lead to disease establishment in these species. Here we present a consensus modelling methodology to estimate the habitat suitability for presence of mosquito species in the UK deemed competent for Rift Valley fever virus (RVF) and demonstrate its application in an assessment of the relative risk of establishment of RVF virus in the UK livestock population. The consensus model utilises observed UK mosquito surveillance data, along with climatic and geographic prediction variables, to inform six independent species distribution models; the results of which are combined to produce a single prediction map. As a livestock host is needed to transmit RVF, we then combine the consensus model output with existing maps of sheep and cattle density to predict the areas of the UK where disease is most likely to establish in local mosquito populations. The model results suggest areas of high suitability for RVF competent mosquito species across the length and breadth of the UK. Notable areas of high suitability were the South West of England and coastal areas of Wales, the latter of which was subsequently predicted to be at higher risk for establishment of RVF due to higher livestock densities. This study demonstrates the applicability of outputs of species distribution models to help predict hot-spots for risk of disease establishment. While there is still uncertainty associated with the outputs we believe that the predictions are an improvement on just using the raw presence points from a database alone. The outputs can also be used as part of a multidisciplinary approach to inform risk based disease surveillance activities.


Asunto(s)
Distribución Animal , Ganado/virología , Modelos Teóricos , Mosquitos Vectores/virología , Fiebre del Valle del Rift/epidemiología , Virus de la Fiebre del Valle del Rift , Animales , Clima , Brotes de Enfermedades , Vectores de Enfermedades , Reino Unido
19.
Proc Natl Acad Sci U S A ; 116(46): 23202-23208, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659031

RESUMEN

Consumption of globally traded agricultural commodities like soy and palm oil is one of the primary causes of deforestation and biodiversity loss in some of the world's most species-rich ecosystems. However, the complexity of global supply chains has confounded efforts to reduce impacts. Companies and governments with sustainability commitments struggle to understand their own sourcing patterns, while the activities of more unscrupulous actors are conveniently masked by the opacity of global trade. We combine state-of-the-art material flow, economic trade, and biodiversity impact models to produce an innovative approach for understanding the impacts of trade on biodiversity loss and the roles of remote markets and actors. We do this for the production of soy in the Brazilian Cerrado, home to more than 5% of the world´s species. Distinct sourcing patterns of consumer countries and trading companies result in substantially different impacts on endemic species. Connections between individual buyers and specific hot spots explain the disproportionate impacts of some actors on endemic species and individual threatened species, such as the particular impact of European Union consumers on the recent habitat losses for the iconic giant anteater (Myrmecophaga tridactyla). In making these linkages explicit, our approach enables commodity buyers and investors to target their efforts much more closely to improve the sustainability of their supply chains in their sourcing regions while also transforming our ability to monitor the impact of such commitments over time.


Asunto(s)
Agricultura , Biodiversidad , Comercio , Glycine max , Modelos Teóricos , Animales , Brasil , Internacionalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...