Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(9): e0275226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36178892

RESUMEN

To gain insights into the molecular interactions of an intracellular pathogen and its host cell, we studied the gene expression and chromatin states of human fibroblasts infected with the Apicomplexan parasite Toxoplasma gondii. We show a striking activation of host cell genes that regulate a number of cellular processes, some of which are protective of the host cell, others likely to be advantageous to the pathogen. The simultaneous capture of host and parasite genomic information allowed us to gain insights into the regulation of the T. gondii genome. We show how chromatin accessibility and transcriptional profiling together permit novel annotation of the parasite's genome, including more accurate mapping of known genes and the identification of new genes and cis-regulatory elements. Motif analysis reveals not only the known T. gondii AP2 transcription factor-binding site but also a previously-undiscovered candidate TATA box-containing motif at one-quarter of promoters. By inferring the transcription factor and upstream cell signaling responses involved in the host cell, we can use genomic information to gain insights into T. gondii's perturbation of host cell physiology. Our resulting model builds on previously-described human host cell signalling responses to T. gondii infection, linked to induction of specific transcription factors, some of which appear to be solely protective of the host cell, others of which appear to be co-opted by the pathogen to enhance its own survival.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Animales , Cromatina/genética , Perfilación de la Expresión Génica , Genómica , Humanos , Parásitos/genética , Toxoplasma/genética , Toxoplasmosis/genética , Toxoplasmosis/parasitología , Factores de Transcripción/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-32714878

RESUMEN

Apicomplexa are obligate intracellular parasites which cause various animal and human diseases including malaria, toxoplasmosis, and cryptosporidiosis. They proliferate by a unique mechanism that combines physically separated semi-closed mitosis of the nucleus and assembly of daughter cells by internal budding. Mitosis occurs in the presence of a nuclear envelope and with little appreciable chromatin condensation. A long standing question in the field has been how parasites keep track of their uncondensed chromatin chromosomes throughout their development, and hence secure proper chromosome segregation during division. Past work demonstrated that the centromeres, the region of kinetochore assembly at chromosomes, of Toxoplasma gondii remain clustered at a defined region of the nuclear periphery proximal to the main microtubule organizing center of the cell, the centrosome. We have proposed that this mechanism is likely involved in the process. Here we set out to identify underlying molecular players involved in centromere clustering. Through pharmacological treatment and structural analysis we show that centromere clustering is not mediated by persistent microtubules of the mitotic spindle. We identify the chromatin binding factor a homolog of structural maintenance of chromosomes 1 (SMC1). Additionally, we show that both TgSMC1, and a centromeric histone, interact with TgExportin1, a predicted soluble component of the nuclear pore complex. Our results suggest that the nuclear envelope, and in particular the nuclear pore complex may play a role in positioning centromeres in T. gondii.


Asunto(s)
Toxoplasma , Animales , Centrómero , Segregación Cromosómica , Cromosomas Humanos Par 1 , Humanos , Poro Nuclear , Toxoplasma/genética
3.
Mol Syndromol ; 9(1): 5-14, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29456477

RESUMEN

Multilocus analysis of rare or genetically heterogeneous diseases is a distinct advantage of next-generation sequencing (NGS) over conventional single-gene investigations. Recent studies have begun to uncover an under-recognized prevalence of dual molecular diagnoses in patients with a "blended" phenotype that is the result of 2 clinical diagnoses involving 2 separate genetic loci. This blended phenotype could be mistakenly interpreted as a novel clinical extension of a single-gene disorder. In this study, we ascertained a proband from a large consanguineous Iranian family who manifests postlingual, progressive, moderate hearing loss in addition to suspected Ellis-van Creveld syndrome phenotype. NGS with a customized skeletal dysplasia panel containing over 370 genes and subsequent bioinformatics analysis disclosed 2 homozygous mutations in EVC2 (c.2653C>T; p.Arg885*) and COL11A2 (c.966dup; p.Thr323Hisfs*19), respectively. This study highlights a dual molecular diagnosis in a patient with a blending of 2 distinct phenotypes and illustrates the advantage and importance of this staple technology to facilitate rapid and comprehensive genetic dissection of a heterogeneous phenotype. The differentiation between phenotypic expansion of a genetic disorder and a blended phenotype that is due to more than one distinct genetic aberration is essential in order to reduce the diagnostic odyssey endured by patients.

4.
Database (Oxford) ; 2015: bav066, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26130662

RESUMEN

Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that must monitor for changes in the host environment and respond accordingly; however, it is still not fully known which genetic or epigenetic factors are involved in regulating virulence traits of T. gondii. There are on-going efforts to elucidate the mechanisms regulating the stage transition process via the application of high-throughput epigenomics, genomics and proteomics techniques. Given the range of experimental conditions and the typical yield from such high-throughput techniques, a new challenge arises: how to effectively collect, organize and disseminate the generated data for subsequent data analysis. Here, we describe toxoMine, which provides a powerful interface to support sophisticated integrative exploration of high-throughput experimental data and metadata, providing researchers with a more tractable means toward understanding how genetic and/or epigenetic factors play a coordinated role in determining pathogenicity of T. gondii. As a data warehouse, toxoMine allows integration of high-throughput data sets with public T. gondii data. toxoMine is also able to execute complex queries involving multiple data sets with straightforward user interaction. Furthermore, toxoMine allows users to define their own parameters during the search process that gives users near-limitless search and query capabilities. The interoperability feature also allows users to query and examine data available in other InterMine systems, which would effectively augment the search scope beyond what is available to toxoMine. toxoMine complements the major community database ToxoDB by providing a data warehouse that enables more extensive integrative studies for T. gondii. Given all these factors, we believe it will become an indispensable resource to the greater infectious disease research community.


Asunto(s)
Bases de Datos Genéticas , Genómica , Biología de Sistemas , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/patogenicidad
5.
Aging (Albany NY) ; 7(12): 1171-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26729707

RESUMEN

Differences in DNA repair capacity have been hypothesized to underlie the great range of maximum lifespans among mammals. However, measurements of individual DNA repair activities in cells and animals have not substantiated such a relationship because utilization of repair pathways among animals--depending on habitats, anatomical characteristics, and life styles--varies greatly between mammalian species. Recent advances in high-throughput genomics, in combination with increased knowledge of the genetic pathways involved in genome maintenance, now enable a comprehensive comparison of DNA repair transcriptomes in animal species with extreme lifespan differences. Here we compare transcriptomes of liver, an organ with high oxidative metabolism and abundant spontaneous DNA damage, from humans, naked mole rats, and mice, with maximum lifespans of ~120, 30, and 3 years, respectively, with a focus on genes involved in DNA repair. The results show that the longer-lived species, human and naked mole rat, share higher expression of DNA repair genes, including core genes in several DNA repair pathways. A more systematic approach of signaling pathway analysis indicates statistically significant upregulation of several DNA repair signaling pathways in human and naked mole rat compared with mouse. The results of this present work indicate, for the first time, that DNA repair is upregulated in a major metabolic organ in long-lived humans and naked mole rats compared with short-lived mice. These results strongly suggest that DNA repair can be considered a genuine longevity assurance system.


Asunto(s)
Reparación del ADN/fisiología , Longevidad/genética , Longevidad/fisiología , Animales , Regulación de la Expresión Génica/fisiología , Humanos , Ratones , Ratas , Especificidad de la Especie , Transcriptoma
6.
PLoS One ; 9(11): e111297, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25393307

RESUMEN

Using high through-put RNA sequencing, we assayed the transcriptomes of three different strains of Toxoplasma gondii representing three common genotypes under both in vitro tachyzoite and in vitro bradyzoite-inducing alkaline stress culture conditions. Strikingly, the differences in transcriptional profiles between the strains, RH, PLK, and CTG, is much greater than differences between tachyzoites and alkaline stressed in vitro bradyzoites. With an FDR of 10%, we identified 241 genes differentially expressed between CTG tachyzoites and in vitro bradyzoites, including 5 putative AP2 transcription factors. We also observed a close association between cell cycle regulated genes and differentiation. By Gene Set Enrichment Analysis (GSEA), there are a number of KEGG pathways associated with the in vitro bradyzoite transcriptomes of PLK and CTG, including pyrimidine metabolism and DNA replication. These functions are likely associated with cell-cycle arrest. When comparing mRNA levels between strains, we identified 1,526 genes that were differentially expressed regardless of culture-condition as well as 846 differentially expressed only in bradyzoites and 542 differentially expressed only in tachyzoites between at least two strains. Using GSEA, we identified that ribosomal proteins were expressed at significantly higher levels in the CTG strain than in either the RH or PLK strains. This association holds true regardless of life cycle stage.


Asunto(s)
Estadios del Ciclo de Vida/genética , Proteínas Protozoarias/genética , Toxoplasma/genética , Factor de Transcripción AP-2/genética , Transcriptoma/genética , Secuencia de Bases , Puntos de Control del Ciclo Celular/genética , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Concentración de Iones de Hidrógeno , ARN Mensajero/genética , Análisis de Secuencia de ADN , Toxoplasma/clasificación , Toxoplasma/crecimiento & desarrollo
7.
BMC Genomics ; 15: 515, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24962434

RESUMEN

BACKGROUND: Large amounts of microarray expression data have been generated for the Apicomplexan parasite Toxoplasma gondii in an effort to identify genes critical for virulence or developmental transitions. However, researchers' ability to analyze this data is limited by the large number of unannotated genes, including many that appear to be conserved hypothetical proteins restricted to Apicomplexa. Further, differential expression of individual genes is not always informative and often relies on investigators to draw big-picture inferences without the benefit of context. We hypothesized that customization of gene set enrichment analysis (GSEA) to T. gondii would enable us to rigorously test whether groups of genes serving a common biological function are co-regulated during the developmental transition to the latent bradyzoite form. RESULTS: Using publicly available T. gondii expression microarray data, we created Toxoplasma gene sets related to bradyzoite differentiation, oocyst sporulation, and the cell cycle. We supplemented these with lists of genes derived from community annotation efforts that identified contents of the parasite-specific organelles, rhoptries, micronemes, dense granules, and the apicoplast. Finally, we created gene sets based on metabolic pathways annotated in the KEGG database and Gene Ontology terms associated with gene annotations available at http://www.toxodb.org. These gene sets were used to perform GSEA analysis using two sets of published T. gondii expression data that characterized T. gondii stress response and differentiation to the latent bradyzoite form. CONCLUSIONS: GSEA provides evidence that cell cycle regulation and bradyzoite differentiation are coupled. Δgcn5A mutants unable to induce bradyzoite-associated genes in response to alkaline stress have different patterns of cell cycle and bradyzoite gene expression from stressed wild-type parasites. Extracellular tachyzoites resemble a transitional state that differs in gene expression from both replicating intracellular tachyzoites and in vitro bradyzoites by expressing genes that are enriched in bradyzoites as well as genes that are associated with the G1 phase of the cell cycle. The gene sets we have created are readily modified to reflect ongoing research and will aid researchers' ability to use a knowledge-based approach to data analysis facilitating the development of new insights into the intricate biology of Toxoplasma gondii.


Asunto(s)
Ciclo Celular/genética , Perfilación de la Expresión Génica/métodos , Genes Protozoarios , Estadios del Ciclo de Vida/genética , Toxoplasma/genética , Transporte Biológico , Conjuntos de Datos como Asunto , Espacio Extracelular/metabolismo , Regulación de la Expresión Génica , Espacio Intracelular/metabolismo , Redes y Vías Metabólicas , Estrés Fisiológico , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo
8.
PLoS Pathog ; 10(1): e1003830, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24391497

RESUMEN

Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa) is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs). While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G). Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd) fused to the protein. Induced accumulation of the ddHAGCN5b(E703G) protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G) parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip). Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a "core complex" that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1) subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G) parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required during the Toxoplasma lytic cycle.


Asunto(s)
Proliferación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Histona Acetiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Sustitución de Aminoácidos , Estabilidad de Enzimas/fisiología , Histona Acetiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Mutación Missense , Proteómica/métodos , Proteínas Protozoarias/genética , Toxoplasma/genética , Factores de Transcripción/genética , Transcripción Genética/fisiología
9.
PLoS Genet ; 9(2): e1003305, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437009

RESUMEN

In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.


Asunto(s)
Empalme Alternativo/genética , Ciclo Celular/genética , ARN Mensajero , Proteínas de Unión al ARN , Toxoplasma , Secuencia Conservada/genética , Fase G1/genética , Regulación de la Expresión Génica , Humanos , Mutación , Motivos de Nucleótidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia de Aminoácido , Temperatura , Toxoplasma/genética , Toxoplasma/metabolismo
10.
Mol Microbiol ; 87(3): 641-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23240624

RESUMEN

Toxoplasma gondii undergoes many phenotypic changes during its life cycle. The recent identification of AP2 transcription factors in T. gondii has provided a platform for studying the mechanisms controlling gene expression. In the present study, we report that a recombinant protein encompassing the TgAP2XI-4 AP2 domain was able to specifically bind to a DNA motif using gel retardation assays. TgAP2XI-4 protein is localized in the parasite nucleus throughout the tachyzoite life cycle in vitro, with peak expression occurring after cytokinesis. We found that the TgAP2XI-4 transcript level was higher in bradyzoite cysts isolated from brains of chronically infected mice than in the rapidly replicating tachyzoites. A knockout of the TgAP2XI-4 gene in both T. gondii virulent type I and avirulent type II strains reveals its role in modulating expression and promoter activity of genes involved in stage conversion of the rapidly replicating tachyzoites to the dormant cyst forming bradyzoites. Furthermore, mice infected with the type II KO mutants show a drastically reduced brain cyst burden. Thus, our results validate TgAP2XI-4 as a novel nuclear factor that regulates bradyzoite gene expression during parasite differentiation and cyst formation.


Asunto(s)
Regulación de la Expresión Génica , Toxoplasma/citología , Toxoplasma/genética , Factores de Transcripción/metabolismo , Animales , Encéfalo/parasitología , Encéfalo/patología , ADN Protozoario/metabolismo , Modelos Animales de Enfermedad , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Inactivación de Genes , Ratones , Unión Proteica , Esporas Protozoarias/citología , Esporas Protozoarias/genética , Toxoplasmosis Animal/parasitología , Toxoplasmosis Animal/patología , Factores de Transcripción/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
Trends Parasitol ; 28(5): 202-13, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22480826

RESUMEN

Chromatin structure plays a vital role in epigenetic regulation of protozoan parasite gene expression. Epigenetic gene regulation impacts upon parasite virulence, differentiation and cell-cycle control. Recent work in many laboratories has elucidated the functions of proteins that regulate parasite gene expression by chemical modification of constituent nucleosomes. A major focus of investigation has been the characterization of post-translational modifications (PTMs) of histones and the identification of the enzymes responsible. Despite conserved features and specificity common to all eukaryotes, parasite enzymes involved in chromatin modification have unique functions that regulate unique aspects of parasite biology.


Asunto(s)
Cromatina/metabolismo , Epigenómica , Eucariontes/genética , Eucariontes/metabolismo , Parásitos/genética , Parásitos/metabolismo , Animales , Regulación de la Expresión Génica , Histonas/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(9): 3767-72, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21321216

RESUMEN

Members of the eukaryotic phylum Apicomplexa are the cause of important human diseases including malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular parasites produce new invasive stages through a complex budding process. The budding cycle is remarkably flexible and can produce varied numbers of progeny to adapt to different host-cell niches. How this complex process is coordinated remains poorly understood. Using Toxoplasma gondii as a genetic model, we show that a key element to this coordination is the centrocone, a unique elaboration of the nuclear envelope that houses the mitotic spindle. Exploiting transgenic parasite lines expressing epitope-tagged centromeric H3 variant CenH3, we identify the centromeres of T. gondii chromosomes by hybridization of chromatin immunoprecipitations to genome-wide microarrays (ChIP-chip). We demonstrate that centromere attachment to the centrocone persists throughout the parasite cell cycle and that centromeres localize to a single apical region within the nucleus. Centromere sequestration provides a mechanism for the organization of the Toxoplasma nucleus and the maintenance of genome integrity.


Asunto(s)
Ciclo Celular , Centrómero/metabolismo , Toxoplasma/citología , Toxoplasma/metabolismo , Ciclo Celular/efectos de los fármacos , Centrómero/efectos de los fármacos , Inmunoprecipitación de Cromatina , Rotura Cromosómica/efectos de los fármacos , Etopósido/farmacología , Técnica del Anticuerpo Fluorescente , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación/efectos de los fármacos , Mitosis/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Toxoplasma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA