Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Nat Commun ; 15(1): 7897, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284848

RESUMEN

Historically, eloquent functions have been viewed as localized to focal areas of human cerebral cortex, while more recent studies suggest they are encoded by distributed networks. We examined the network properties of cortical sites defined by stimulation to be critical for speech and language, using electrocorticography from sixteen participants during word-reading. We discovered distinct network signatures for sites where stimulation caused speech arrest and language errors. Both demonstrated lower local and global connectivity, whereas sites causing language errors exhibited higher inter-community connectivity, identifying them as connectors between modules in the language network. We used machine learning to classify these site types with reasonably high accuracy, even across participants, suggesting that a site's pattern of connections within the task-activated language network helps determine its importance to function. These findings help to bridge the gap in our understanding of how focal cortical stimulation interacts with complex brain networks to elicit language deficits.


Asunto(s)
Corteza Cerebral , Electrocorticografía , Lenguaje , Habla , Humanos , Masculino , Femenino , Corteza Cerebral/fisiología , Adulto , Habla/fisiología , Red Nerviosa/fisiología , Adulto Joven , Aprendizaje Automático , Mapeo Encefálico
2.
Front Netw Physiol ; 4: 1425625, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229346

RESUMEN

Introduction: For patients with drug-resistant epilepsy, successful localization and surgical treatment of the epileptogenic zone (EZ) can bring seizure freedom. However, surgical success rates vary widely because there are currently no clinically validated biomarkers of the EZ. Highly epileptogenic regions often display increased levels of cortical excitability, which can be probed using single-pulse electrical stimulation (SPES), where brief pulses of electrical current are delivered to brain tissue. It has been shown that high-amplitude responses to SPES can localize EZ regions, indicating a decreased threshold of excitability. However, performing extensive SPES in the epilepsy monitoring unit (EMU) is time-consuming. Thus, we built patient-specific in silico dynamical network models from interictal intracranial EEG (iEEG) to test whether virtual stimulation could reveal information about the underlying network to identify highly excitable brain regions similar to physical stimulation of the brain. Methods: We performed virtual stimulation in 69 patients that were evaluated at five centers and assessed for clinical outcome 1 year post surgery. We further investigated differences in observed SPES iEEG responses of 14 patients stratified by surgical outcome. Results: Clinically-labeled EZ cortical regions exhibited higher excitability from virtual stimulation than non-EZ regions with most significant differences in successful patients and little difference in failure patients. These trends were also observed in responses to extensive SPES performed in the EMU. Finally, when excitability was used to predict whether a channel is in the EZ or not, the classifier achieved an accuracy of 91%. Discussion: This study demonstrates how excitability determined via virtual stimulation can capture valuable information about the EZ from interictal intracranial EEG.

3.
N Engl J Med ; 391(7): 619-626, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39141854

RESUMEN

The durability of communication with the use of brain-computer interfaces in persons with progressive neurodegenerative disease has not been extensively examined. We report on 7 years of independent at-home use of an implanted brain-computer interface for communication by a person with advanced amyotrophic lateral sclerosis (ALS), the inception of which was reported in 2016. The frequency of at-home use increased over time to compensate for gradual loss of control of an eye-gaze-tracking device, followed by a progressive decrease in use starting 6 years after implantation. At-home use ended when control of the brain-computer interface became unreliable. No signs of technical malfunction were found. Instead, the amplitude of neural signals declined, and computed tomographic imaging revealed progressive atrophy, which suggested that ALS-related neurodegeneration ultimately rendered the brain-computer interface ineffective after years of successful use, although alternative explanations are plausible. (Funded by the National Institute on Deafness and Other Communication Disorders and others; ClinicalTrials.gov number, NCT02224469.).


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia , Interfaces Cerebro-Computador , Femenino , Humanos , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/rehabilitación , Atrofia/diagnóstico por imagen , Atrofia/etiología , Atrofia/prevención & control , Encéfalo/diagnóstico por imagen , Equipos de Comunicación para Personas con Discapacidad , Factores de Tiempo , Insuficiencia del Tratamiento , Electrodos Implantados
4.
Clin Neurophysiol ; 166: 43-55, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096821

RESUMEN

OBJECTIVE: While evoked potentials elicited by single pulse electrical stimulation (SPES) may assist seizure onset zone (SOZ) localization during intracranial EEG (iEEG) monitoring, induced high frequency activity has also shown promising utility. We aimed to predict SOZ sites using induced cortico-cortical spectral responses (CCSRs) as an index of excitability within epileptogenic networks. METHODS: SPES was conducted in 27 epilepsy patients undergoing iEEG monitoring and CCSRs were quantified by significant early (10-200 ms) increases in power from 10 to 250 Hz. Using response power as CCSR network connection strengths, graph centrality measures (metrics quantifying each site's influence within the network) were used to predict whether sites were within the SOZ. RESULTS: Across patients with successful surgical outcomes, greater CCSR centrality predicted SOZ sites and SOZ sites targeted for surgical treatment with median AUCs of 0.85 and 0.91, respectively. We found that the alignment between predicted and targeted SOZ sites predicted surgical outcome with an AUC of 0.79. CONCLUSIONS: These findings indicate that network analysis of CCSRs can be used to identify increased excitability of SOZ sites and discriminate important surgical targets within the SOZ. SIGNIFICANCE: CCSRs may supplement traditional passive iEEG monitoring in seizure localization, potentially reducing the need for recording numerous seizures.


Asunto(s)
Estimulación Eléctrica , Convulsiones , Humanos , Masculino , Femenino , Adulto , Convulsiones/fisiopatología , Convulsiones/cirugía , Convulsiones/diagnóstico , Estimulación Eléctrica/métodos , Adulto Joven , Adolescente , Electrocorticografía/métodos , Persona de Mediana Edad , Electroencefalografía/métodos , Red Nerviosa/fisiopatología , Potenciales Evocados/fisiología , Corteza Cerebral/fisiopatología , Epilepsia/fisiopatología , Epilepsia/cirugía , Epilepsia/diagnóstico
5.
Epilepsy Behav ; 158: 109908, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964183

RESUMEN

OBJECTIVE: Evaluate the performance of a custom application developed for tonic-clonic seizure (TCS) monitoring on a consumer-wearable (Apple Watch) device. METHODS: Participants with a history of convulsive epileptic seizures were recruited for either Epilepsy Monitoring Unit (EMU) or ambulatory (AMB) monitoring; participants without epilepsy (normal controls [NC]) were also enrolled in the AMB group. Both EMU and AMB participants wore an Apple Watch with a research app that continuously recorded accelerometer and photoplethysmography (PPG) signals, and ran a fixed-and-frozen tonic-clonic seizure detection algorithm during the testing period. This algorithm had been previously developed and validated using a separate training dataset. All EMU convulsive events were validated by video-electroencephalography (video-EEG); AMB events were validated by caregiver reporting and follow-ups. Device performance was characterized and compared to prior monitoring devices through sensitivity, false alarm rate (FAR; false-alarms per 24 h), precision, and detection delay (latency). RESULTS: The EMU group had 85 participants (4,279 h, 19 TCS from 15 participants) enrolled across four EMUs; the AMB group had 21 participants (13 outpatient, 8 NC, 6,735 h, 10 TCS from 3 participants). All but one AMB participant completed the study. Device performance in the EMU group included a sensitivity of 100 % [95 % confidence interval (CI) 79-100 %]; an FAR of 0.05 [0.02, 0.08] per 24 h; a precision of 68 % [48 %, 83 %]; and a latency of 32.07 s [standard deviation (std) 10.22 s]. The AMB group had a sensitivity of 100 % [66-100 %]; an FAR of 0.13 [0.08, 0.24] per 24 h; a precision of 22 % [11 %, 37 %]; and a latency of 37.38 s [13.24 s]. Notably, a single AMB participant was responsible for 8 of 31 false alarms. The AMB FAR excluding this participant was 0.10 [0.07, 0.14] per 24 h. DISCUSSION: This study demonstrates the practicability of TCS monitoring on a popular consumer wearable (Apple Watch) in daily use for people with epilepsy. The monitoring app had a high sensitivity and a substantially lower FAR than previously reported in both EMU and AMB environments.


Asunto(s)
Monitoreo Ambulatorio , Convulsiones , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Femenino , Adulto , Monitoreo Ambulatorio/instrumentación , Monitoreo Ambulatorio/métodos , Persona de Mediana Edad , Adulto Joven , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Estudios Prospectivos , Electroencefalografía/métodos , Electroencefalografía/instrumentación , Adolescente , Algoritmos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Fotopletismografía/instrumentación , Fotopletismografía/métodos , Anciano , Acelerometría/instrumentación
6.
J Neural Eng ; 21(4)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38925110

RESUMEN

Objective.Speech brain-computer interfaces (BCIs) have the potential to augment communication in individuals with impaired speech due to muscle weakness, for example in amyotrophic lateral sclerosis (ALS) and other neurological disorders. However, to achieve long-term, reliable use of a speech BCI, it is essential for speech-related neural signal changes to be stable over long periods of time. Here we study, for the first time, the stability of speech-related electrocorticographic (ECoG) signals recorded from a chronically implanted ECoG BCI over a 12 month period.Approach.ECoG signals were recorded by an ECoG array implanted over the ventral sensorimotor cortex in a clinical trial participant with ALS. Because ECoG-based speech decoding has most often relied on broadband high gamma (HG) signal changes relative to baseline (non-speech) conditions, we studied longitudinal changes of HG band power at baseline and during speech, and we compared these with residual high frequency noise levels at baseline. Stability was further assessed by longitudinal measurements of signal-to-noise ratio, activation ratio, and peak speech-related HG response magnitude (HG response peaks). Lastly, we analyzed the stability of the event-related HG power changes (HG responses) for individual syllables at each electrode.Main Results.We found that speech-related ECoG signal responses were stable over a range of syllables activating different articulators for the first year after implantation.Significance.Together, our results indicate that ECoG can be a stable recording modality for long-term speech BCI systems for those living with severe paralysis.Clinical Trial Information.ClinicalTrials.gov, registration number NCT03567213.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Electrocorticografía , Habla , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Estudios Longitudinales , Electrocorticografía/métodos , Habla/fisiología , Masculino , Ritmo Gamma/fisiología , Persona de Mediana Edad , Femenino , Electrodos Implantados
7.
Sci Rep ; 14(1): 9617, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671062

RESUMEN

Brain-computer interfaces (BCIs) that reconstruct and synthesize speech using brain activity recorded with intracranial electrodes may pave the way toward novel communication interfaces for people who have lost their ability to speak, or who are at high risk of losing this ability, due to neurological disorders. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a man with impaired articulation due to ALS, participating in a clinical trial (ClinicalTrials.gov, NCT03567213) exploring different strategies for BCI communication. The 3-stage approach reported here relies on recurrent neural networks to identify, decode and synthesize speech from electrocorticographic (ECoG) signals acquired across motor, premotor and somatosensory cortices. We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the participant from a vocabulary of 6 keywords previously used for decoding commands to control a communication board. Evaluation of the intelligibility of the synthesized speech indicates that 80% of the words can be correctly recognized by human listeners. Our results show that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words while preserving the participant's voice profile, and provide further evidence for the stability of ECoG for speech-based BCIs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Habla , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/terapia , Masculino , Habla/fisiología , Persona de Mediana Edad , Electrodos Implantados , Electrocorticografía
8.
Adv Sci (Weinh) ; 10(35): e2304853, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875404

RESUMEN

Brain-computer interfaces (BCIs) can be used to control assistive devices by patients with neurological disorders like amyotrophic lateral sclerosis (ALS) that limit speech and movement. For assistive control, it is desirable for BCI systems to be accurate and reliable, preferably with minimal setup time. In this study, a participant with severe dysarthria due to ALS operates computer applications with six intuitive speech commands via a chronic electrocorticographic (ECoG) implant over the ventral sensorimotor cortex. Speech commands are accurately detected and decoded (median accuracy: 90.59%) throughout a 3-month study period without model retraining or recalibration. Use of the BCI does not require exogenous timing cues, enabling the participant to issue self-paced commands at will. These results demonstrate that a chronically implanted ECoG-based speech BCI can reliably control assistive devices over long time periods with only initial model training and calibration, supporting the feasibility of unassisted home use.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Humanos , Habla , Esclerosis Amiotrófica Lateral/complicaciones , Electrocorticografía
9.
Nature ; 620(7976): 954-955, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612488
10.
medRxiv ; 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37425721

RESUMEN

Recent studies have shown that speech can be reconstructed and synthesized using only brain activity recorded with intracranial electrodes, but until now this has only been done using retrospective analyses of recordings from able-bodied patients temporarily implanted with electrodes for epilepsy surgery. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a clinical trial participant (ClinicalTrials.gov, NCT03567213) with dysarthria due to amyotrophic lateral sclerosis (ALS). We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the user from a vocabulary of 6 keywords originally designed to allow intuitive selection of items on a communication board. Our results show for the first time that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words that are intelligible to human listeners while preserving the participants voice profile.

11.
Neurobiol Lang (Camb) ; 4(1): 53-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229140

RESUMEN

Speech requires successful information transfer within cortical-basal ganglia loop circuits to produce the desired acoustic output. For this reason, up to 90% of Parkinson's disease patients experience impairments of speech articulation. Deep brain stimulation (DBS) is highly effective in controlling the symptoms of Parkinson's disease, sometimes alongside speech improvement, but subthalamic nucleus (STN) DBS can also lead to decreases in semantic and phonological fluency. This paradox demands better understanding of the interactions between the cortical speech network and the STN, which can be investigated with intracranial EEG recordings collected during DBS implantation surgery. We analyzed the propagation of high-gamma activity between STN, superior temporal gyrus (STG), and ventral sensorimotor cortices during reading aloud via event-related causality, a method that estimates strengths and directionalities of neural activity propagation. We employed a newly developed bivariate smoothing model based on a two-dimensional moving average, which is optimal for reducing random noise while retaining a sharp step response, to ensure precise embedding of statistical significance in the time-frequency space. Sustained and reciprocal neural interactions between STN and ventral sensorimotor cortex were observed. Moreover, high-gamma activity propagated from the STG to the STN prior to speech onset. The strength of this influence was affected by the lexical status of the utterance, with increased activity propagation during word versus pseudoword reading. These unique data suggest a potential role for the STN in the feedforward control of speech.

12.
Brain Stimul ; 16(3): 772-782, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37141936

RESUMEN

BACKGROUND: While single pulse electrical stimulation (SPES) is increasingly used to study effective connectivity, the effects of varying stimulation parameters on the resulting cortico-cortical evoked potentials (CCEPs) have not been systematically explored. OBJECTIVE: We sought to understand the interacting effects of stimulation pulse width, current intensity, and charge on CCEPs through an extensive testing of this parameter space and analysis of several response metrics. METHODS: We conducted SPES in 11 patients undergoing intracranial EEG monitoring using five combinations of current intensity (1.5, 2.0, 3.0, 5.0, and 7.5 mA) and pulse width at each of three charges (0.750, 1.125, and 1.500 µC/phase) to study how CCEP amplitude, distribution, latency, morphology, and stimulus artifact amplitude vary with each parameter. RESULTS: Stimulations with a greater charge or a greater current intensity and shorter pulse width at a given charge generally resulted in greater CCEP amplitudes and spatial distributions, shorter latencies, and increased waveform correlation. These effects interacted such that stimulations with the lowest charge and highest current intensities resulted in greater response amplitudes and spatial distributions than stimulations with the highest charge and lowest current intensities. Stimulus artifact amplitude increased with charge, but this could be mitigated by using shorter pulse widths. CONCLUSIONS: Our results indicate that individual combinations of current intensity and pulse width, in addition to charge, are important determinants of CCEP magnitude, morphology, and spatial extent. Together, these findings suggest that high current intensity, short pulse width stimulations are optimal SPES settings for eliciting strong and consistent responses while minimizing charge.


Asunto(s)
Electrocorticografía , Potenciales Evocados , Humanos , Potenciales Evocados/fisiología , Electrocorticografía/métodos , Estimulación Eléctrica/métodos , Frecuencia Cardíaca , Artefactos
13.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37066306

RESUMEN

Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant's voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity.

14.
Cell Rep ; 42(1): 111919, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640346

RESUMEN

Cognitive control involves flexibly combining multiple sensory inputs with task-dependent goals during decision making. Several tasks involving conflicting sensory inputs and motor outputs have been proposed to examine cognitive control, including the Stroop, Flanker, and multi-source interference task. Because these tasks have been studied independently, it remains unclear whether the neural signatures of cognitive control reflect abstract control mechanisms or specific combinations of sensory and behavioral aspects of each task. To address these questions, we record invasive neurophysiological signals from 16 patients with pharmacologically intractable epilepsy and compare neural responses within and between tasks. Neural signals differ between incongruent and congruent conditions, showing strong modulation by conflicting task demands. These neural signals are mostly specific to each task, generalizing within a task but not across tasks. These results highlight the complex interplay between sensory inputs, motor outputs, and task demands underlying cognitive control processes.


Asunto(s)
Cognición , Humanos , Cognición/fisiología , Tiempo de Reacción/fisiología
15.
Cereb Cortex ; 33(9): 5740-5750, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36408645

RESUMEN

Noninvasive brain imaging studies have shown that higher visual processing of objects occurs in neural populations that are separable along broad semantic categories, particularly living versus nonliving objects. However, because of their limited temporal resolution, these studies have not been able to determine whether broad semantic categories are also reflected in the dynamics of neural interactions within cortical networks. We investigated the time course of neural propagation among cortical areas activated during object naming in 12 patients implanted with subdural electrode grids prior to epilepsy surgery, with a special focus on the visual recognition phase of the task. Analysis of event-related causality revealed significantly stronger neural propagation among sites within ventral temporal lobe (VTL) at early latencies, around 250 ms, for living objects compared to nonliving objects. Differences in other features, including familiarity, visual complexity, and age of acquisition, did not significantly change the patterns of neural propagation. Our findings suggest that the visual processing of living objects relies on stronger causal interactions among sites within VTL, perhaps reflecting greater integration of visual feature processing. In turn, this may help explain the fragility of naming living objects in neurological diseases affecting VTL.


Asunto(s)
Mapeo Encefálico , Reconocimiento en Psicología , Humanos , Encéfalo , Lóbulo Temporal , Semántica , Reconocimiento Visual de Modelos
16.
Clin Neurophysiol ; 145: 119-128, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36127246

RESUMEN

OBJECTIVE: As single pulse electrical stimulation (SPES) is increasingly utilized to help localize the seizure onset zone (SOZ), it is important to understand how stimulation intensity can affect the ability to use cortico-cortical evoked potentials (CCEPs) to delineate epileptogenic regions. METHODS: We studied 15 drug-resistant epilepsy patients undergoing intracranial EEG monitoring and SPES with titrations of stimulation intensity. The N1 amplitude and distribution of CCEPs elicited in the SOZ and non-seizure onset zone (nSOZ) were quantified at each intensity. The separability of the SOZ and nSOZ using N1 amplitudes was compared between models using responses to titrations, responses to one maximal intensity, or both. RESULTS: At 2 mA and above, the increase in N1 amplitude with current intensity was greater for responses within the SOZ, and SOZ response distribution was maximized by 4-6 mA. Models incorporating titrations achieved better separability of SOZ and nSOZ compared to those using one maximal intensity. CONCLUSIONS: We demonstrated that differences in CCEP amplitude over a range of current intensities can improve discriminability of SOZ regions. SIGNIFICANCE: This study provides insight into the underlying excitability of the SOZ and how differences in current-dependent amplitudes of CCEPs may be used to help localize epileptogenic sites.


Asunto(s)
Epilepsia Refractaria , Electrocorticografía , Humanos , Potenciales Evocados/fisiología , Convulsiones , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/terapia , Estimulación Eléctrica , Electroencefalografía
17.
Brain ; 145(11): 3901-3915, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36412516

RESUMEN

Over 15 million epilepsy patients worldwide have drug-resistant epilepsy. Successful surgery is a standard of care treatment but can only be achieved through complete resection or disconnection of the epileptogenic zone, the brain region(s) where seizures originate. Surgical success rates vary between 20% and 80%, because no clinically validated biological markers of the epileptogenic zone exist. Localizing the epileptogenic zone is a costly and time-consuming process, which often requires days to weeks of intracranial EEG (iEEG) monitoring. Clinicians visually inspect iEEG data to identify abnormal activity on individual channels occurring immediately before seizures or spikes that occur interictally (i.e. between seizures). In the end, the clinical standard mainly relies on a small proportion of the iEEG data captured to assist in epileptogenic zone localization (minutes of seizure data versus days of recordings), missing opportunities to leverage these largely ignored interictal data to better diagnose and treat patients. IEEG offers a unique opportunity to observe epileptic cortical network dynamics but waiting for seizures increases patient risks associated with invasive monitoring. In this study, we aimed to leverage interictal iEEG data by developing a new network-based interictal iEEG marker of the epileptogenic zone. We hypothesized that when a patient is not clinically seizing, it is because the epileptogenic zone is inhibited by other regions. We developed an algorithm that identifies two groups of nodes from the interictal iEEG network: those that are continuously inhibiting a set of neighbouring nodes ('sources') and the inhibited nodes themselves ('sinks'). Specifically, patient-specific dynamical network models were estimated from minutes of iEEG and their connectivity properties revealed top sources and sinks in the network, with each node being quantified by source-sink metrics. We validated the algorithm in a retrospective analysis of 65 patients. The source-sink metrics identified epileptogenic regions with 73% accuracy and clinicians agreed with the algorithm in 93% of seizure-free patients. The algorithm was further validated by using the metrics of the annotated epileptogenic zone to predict surgical outcomes. The source-sink metrics predicted outcomes with an accuracy of 79% compared to an accuracy of 43% for clinicians' predictions (surgical success rate of this dataset). In failed outcomes, we identified brain regions with high metrics that were untreated. When compared with high frequency oscillations, the most commonly proposed interictal iEEG feature for epileptogenic zone localization, source-sink metrics outperformed in predictive power (by a factor of 1.2), suggesting they may be an interictal iEEG fingerprint of the epileptogenic zone.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Estudios Retrospectivos , Electrocorticografía/métodos , Epilepsia/diagnóstico , Epilepsia/cirugía , Biomarcadores
18.
Front Neurorobot ; 16: 918001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837250

RESUMEN

Advances in intelligent robotic systems and brain-machine interfaces (BMI) have helped restore functionality and independence to individuals living with sensorimotor deficits; however, tasks requiring bimanual coordination and fine manipulation continue to remain unsolved given the technical complexity of controlling multiple degrees of freedom (DOF) across multiple limbs in a coordinated way through a user input. To address this challenge, we implemented a collaborative shared control strategy to manipulate and coordinate two Modular Prosthetic Limbs (MPL) for performing a bimanual self-feeding task. A human participant with microelectrode arrays in sensorimotor brain regions provided commands to both MPLs to perform the self-feeding task, which included bimanual cutting. Motor commands were decoded from bilateral neural signals to control up to two DOFs on each MPL at a time. The shared control strategy enabled the participant to map his four-DOF control inputs, two per hand, to as many as 12 DOFs for specifying robot end effector position and orientation. Using neurally-driven shared control, the participant successfully and simultaneously controlled movements of both robotic limbs to cut and eat food in a complex bimanual self-feeding task. This demonstration of bimanual robotic system control via a BMI in collaboration with intelligent robot behavior has major implications for restoring complex movement behaviors for those living with sensorimotor deficits.

19.
Brain ; 145(11): 3886-3900, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35703986

RESUMEN

Successful outcomes in epilepsy surgery rely on the accurate localization of the seizure onset zone. Localizing the seizure onset zone is often a costly and time-consuming process wherein a patient undergoes intracranial EEG monitoring, and a team of clinicians wait for seizures to occur. Clinicians then analyse the intracranial EEG before each seizure onset to identify the seizure onset zone and localization accuracy increases when more seizures are captured. In this study, we develop a new approach to guide clinicians to actively elicit seizures with electrical stimulation. We propose that a brain region belongs to the seizure onset zone if a periodic stimulation at a particular frequency produces large amplitude oscillations in the intracranial EEG network that propagate seizure activity. Such responses occur when there is 'resonance' in the intracranial EEG network, and the resonant frequency can be detected by observing a sharp peak in the magnitude versus frequency response curve, called a Bode plot. To test our hypothesis, we analysed single-pulse electrical stimulation response data in 32 epilepsy patients undergoing intracranial EEG monitoring. For each patient and each stimulated brain region, we constructed a Bode plot by estimating a transfer function model from the intracranial EEG 'impulse' or single-pulse electrical stimulation response. The Bode plots were then analysed for evidence of resonance. First, we showed that when Bode plot features were used as a marker of the seizure onset zone, it distinguished successful from failed surgical outcomes with an area under the curve of 0.83, an accuracy that surpassed current methods of analysis with cortico-cortical evoked potential amplitude and cortico-cortical spectral responses. Then, we retrospectively showed that three out of five native seizures accidentally triggered in four patients during routine periodic stimulation at a given frequency corresponded to a resonant peak in the Bode plot. Last, we prospectively stimulated peak resonant frequencies gleaned from the Bode plots to elicit seizures in six patients, and this resulted in an induction of three seizures and three auras in these patients. These findings suggest neural resonance as a new biomarker of the seizure onset zone that can guide clinicians in eliciting native seizures to more quickly and accurately localize the seizure onset zone.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Estudios Retrospectivos , Convulsiones/cirugía , Electrocorticografía/métodos , Encéfalo , Electroencefalografía/métodos
20.
Sci Rep ; 12(1): 10353, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725741

RESUMEN

Understanding the cortical representations of movements and their stability can shed light on improved brain-machine interface (BMI) approaches to decode these representations without frequent recalibration. Here, we characterize the spatial organization (somatotopy) and stability of the bilateral sensorimotor map of forearm muscles in an incomplete-high spinal-cord injury study participant implanted bilaterally in the primary motor and sensory cortices with Utah microelectrode arrays (MEAs). We built representation maps by recording bilateral multiunit activity (MUA) and surface electromyography (EMG) as the participant executed voluntary contractions of the extensor carpi radialis (ECR), and attempted motions in the flexor carpi radialis (FCR), which was paralytic. To assess stability, we repeatedly mapped and compared left- and right-wrist-extensor-related activity throughout several sessions, comparing somatotopy of active electrodes, as well as neural signals both at the within-electrode (multiunit) and cross-electrode (network) levels. Wrist motions showed significant activation in motor and sensory cortical electrodes. Within electrodes, firing strength stability diminished as the time increased between consecutive measurements (hours within a session, or days across sessions), with higher stability observed in sensory cortex than in motor, and in the contralateral hemisphere than in the ipsilateral. However, we observed no differences at network level, and no evidence of decoding instabilities for wrist EMG, either across timespans of hours or days, or across recording area. While map stability differs between brain area and hemisphere at multiunit/electrode level, these differences are nullified at ensemble level.


Asunto(s)
Antebrazo , Músculo Esquelético , Electromiografía , Antebrazo/fisiología , Humanos , Movimiento/fisiología , Músculo Esquelético/fisiología , Cuadriplejía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA