Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 98
1.
iScience ; 27(5): 109779, 2024 May 17.
Article En | MEDLINE | ID: mdl-38736550

Metabolic heterogeneity is a determinant of immune cell function. The normal physiological metabolic reprogramming of pregnancy that ensures the fuel requirements of mother and baby are met, might also underpin changes in immunity that occur with pregnancy and manifest as altered responses to pathogens and changes to autoimmune disease symptoms. Using peripheral blood from pregnant women at term, we reveal that monocytes lose M2-like and gain M1-like properties accompanied by reductions in mitochondrial mass, maximal respiration, and cardiolipin content in pregnancy; glycolysis is unperturbed. We establish that muramyl dipeptide (MDP)-stimulated cytokine production relies on oxidative metabolism, then show in pregnancy reduced cytokine production in response to MDP but not LPS. Overall, mitochondrially centered metabolic capabilities of late gestation monocytes are down-regulated revealing natural plasticity in monocyte phenotype and function that could reveal targets for improving pregnancy outcomes but also yield alternative therapeutic approaches to diverse metabolic and/or immune-mediated diseases beyond pregnancy.

2.
Nat Commun ; 15(1): 3518, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664477

Vegetation dieback and recovery may be dependent on the interplay between infrequent acute disturbances and underlying chronic stresses. Coastal wetlands are vulnerable to the chronic stress of sea-level rise, which may affect their susceptibility to acute disturbance events. Here, we show that a large-scale vegetation dieback in the Mississippi River Delta was precipitated by salt-water incursion during an extreme drought in the summer of 2012 and was most severe in areas exposed to greater flooding. Using 16 years of data (2007-2022) from a coastwide network of monitoring stations, we show that the impacts of the dieback lasted five years and that recovery was only partial in areas exposed to greater inundation. Dieback marshes experienced an increase in percent time flooded from 43% in 2007 to 75% in 2022 and a decline in vegetation cover and species richness over the same period. Thus, while drought-induced high salinities and soil saturation triggered a significant dieback event, the chronic increase in inundation is causing a longer-term decline in cover, more widespread losses, and reduced capacity to recover from acute stressors. Overall, our findings point to the importance of mitigating the underlying stresses to foster resilience to both acute and persistent causes of vegetation loss.


Droughts , Rivers , Sea Level Rise , Wetlands , Floods , Mississippi , Plants , Biodiversity , Ecosystem , Salinity
3.
Mol Metab ; 81: 101900, 2024 Mar.
Article En | MEDLINE | ID: mdl-38354856

The pyruvate transporter MPC1 (mitochondrial pyruvate carrier 1) acts as a tumour-suppressor, loss of which correlates with a pro-tumorigenic phenotype and poor survival in several tumour types. In high-grade serous ovarian cancers (HGSOC), patients display copy number loss of MPC1 in around 78% of cases and reduced MPC1 mRNA expression. To explore the metabolic effect of reduced expression, we demonstrate that depleting MPC1 in HGSOC cell lines drives expression of key proline biosynthetic genes; PYCR1, PYCR2 and PYCR3, and biosynthesis of proline. We show that altered proline metabolism underpins cancer cell proliferation, reactive oxygen species (ROS) production, and type I and type VI collagen formation in ovarian cancer cells. Furthermore, exploring The Cancer Genome Atlas, we discovered the PYCR3 isozyme to be highly expressed in a third of HGSOC patients, which was associated with more aggressive disease and diagnosis at a younger age. Taken together, our study highlights that targeting proline metabolism is a potential therapeutic avenue for the treatment of HGSOC.


Monocarboxylic Acid Transporters , Ovarian Neoplasms , Female , Humans , Cell Proliferation , Collagen , Monocarboxylic Acid Transporters/genetics , Ovarian Neoplasms/genetics , Proline
4.
Sci Rep ; 14(1): 1935, 2024 01 22.
Article En | MEDLINE | ID: mdl-38253645

Phragmites australis is exhibiting extensive dieback in the Lower Mississippi River Delta (MRD). We explored the potential for restoration of these marshes by (1) characterizing the chemical profiles of soils collected from healthy and dieback stands of P. australis and from sites recently created from dredge-disposal soils that were expected to be colonized by P. australis and (2) experimentally testing the effects of these soil types on the growth of three common P. australis lineages, Delta, Gulf and European. Soil chemical properties included Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Zn, % organic matter, % carbon, % nitrogen, and pH. Dieback soils were characterized by higher % organic matter, % carbon, % nitrogen, and higher S and Fe concentrations, whereas healthy soils had higher Cu, Al, P and Zn. In comparison, dredge sites were low in nutrients and organic matter compared to healthy soils. Rhizomes of each P. australis lineage were planted in each soil type in a common garden and greenhouse and allowed to grow for five months. Aboveground biomass was 16% lower in dieback and 44% lower in dredge soils than in healthy soils. However, we could detect no significant differences in response to soil types among lineages. Although dredge and dieback sites are not optimal for P. australis growth, plants can thrive on these soils, and we recommend restorative measures be initiated as soon as possible to minimize soil erosion.


Rivers , Soil , Biomass , Poaceae , Carbon , Nitrogen
5.
J Math Biol ; 88(2): 20, 2024 01 25.
Article En | MEDLINE | ID: mdl-38270669

Predation can both reduce prey abundance directly (through density-dependent effects) and indirectly through prey trait-mediated effects. Over the years, many studies have focused on describing the density-area relationship (DAR). However, the mechanisms responsible for the DAR are not well understood. Loss and fragmentation of habitats, owing to human activities, creates landscape-level spatial heterogeneity wherein patches of varying size, isolation and quality are separated by a human-modified "matrix" of varying degrees of hostility and has been a primary driver of species extinctions and declining biodiversity. How matrix hostility in combination with trait-mediated effects influence DAR, minimum patch size, and species coexistence remains an open question. In this paper, we employ a theoretical spatially explicit predator-prey population model built upon the reaction-diffusion framework to explore effects of predator-induced emigration (trait-mediated emigration) and matrix hostility on DAR, minimum patch size, and species coexistence. Our results show that when trait-mediated response strength is sufficiently strong, ranges of patch size emerge where a nonlinear hump-shaped prey DAR is predicted and other ranges where coexistence is not possible. In a conservation perspective, DAR is crucial not only in deciding whether we should have one large habitat patch or several-small (SLOSS), but for understanding the minimum patch size that can support a viable population. Our study lends more credence to the possibility that predators can alter prey DAR through predator-induced prey dispersal.


Biodiversity , Extinction, Biological , Humans , Animals , Diffusion , Phenotype , Predatory Behavior
6.
Pharm Res ; 41(2): 375-385, 2024 Feb.
Article En | MEDLINE | ID: mdl-38114802

PURPOSE: This study is focused on monitoring process parameters and quality attributes of aluminum phosphate (AlPO4) using multiple in-line probes incorporated into an industrial-scale adjuvant suspension manufacturing unit. METHODS: The manufacturing of aluminum adjuvant suspension was monitored at manufacturing scale using conductivity, turbidity, infrared, and particle sizing and count probes to follow the continuous evolution of particle formation and size distribution, and the reaction kinetics during the synthesis of AlPO4. RESULTS: The data showed that AlPO4 forms large particles at the early stages of mixing, followed by a decrease in size and then stabilization towards the later stages of mixing and pH adjustment. The results provided a complementary view of process events and assisted in optimizing several parameters, e.g., flow rate of reactants AlCl3 and Na3PO4 solutions, mixing rate, pH, and conductivity of AlPO4, as well as adjuvant quality attribute such as particle size, thus streamlining and shortening the process development stage. CONCLUSION: The results of this study showed the usefulness of the in-line probes to automate continuous assessment of AlPO4 batch-to-batch consistency during in-house adjuvant production at the industrial scale.


Adjuvants, Immunologic , Aluminum Compounds , Phosphates , Particle Size , Technology, Pharmaceutical/methods
7.
Ecol Evol ; 13(11): e10753, 2023 Nov.
Article En | MEDLINE | ID: mdl-38020706

Movement behavior is central to understanding species distributions, population dynamics and coexistence with other species. Although the relationship between conspecific density and emigration has been well studied, little attention has been paid to how interspecific competitor density affects another species' movement behavior. We conducted releases of two species of competing Tribolium flour beetles at different densities, alone and together in homogeneous microcosms, and tested whether their recaptures-with-distance were well described by a random-diffusion model. We also determined whether mean displacement distances varied with the release density of conspecific and heterospecific beetles. A diffusion model provided a good fit to the redistribution of T. castaneum and T. confusum at all release densities, explaining an average of >60% of the variation in recaptures. For both species, mean displacement (directly proportional to the diffusion rate) exhibited a humped-shaped relationship with conspecific density. Finally, we found that both species of beetle impacted the within-patch movement rates of the other species, but the effect depended on density. For T. castaneum in the highest density treatment, the addition of equal numbers of T. castaneum or T. confusum had the same effect, with mean displacements reduced by approximately one half. The same result occurred for T. confusum released at an intermediate density. In both cases, it was total beetle abundance, not species identity that mattered to mean displacement. We suggest that displacement or diffusion rates that exhibit a nonlinear relationship with density or depend on the presence or abundance of interacting species should be considered when attempting to predict the spatial spread of populations or scaling up to heterogeneous landscapes.

8.
Cancer Metab ; 11(1): 18, 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37858256

BACKGROUND: To support proliferation and survival within a challenging microenvironment, cancer cells must reprogramme their metabolism. As such, targeting cancer cell metabolism is a promising therapeutic avenue. However, identifying tractable nodes of metabolic vulnerability in cancer cells is challenging due to their metabolic plasticity. Identification of effective treatment combinations to counter this is an active area of research. Aspirin has a well-established role in cancer prevention, particularly in colorectal cancer (CRC), although the mechanisms are not fully understood. METHODS: We generated a model to investigate the impact of long-term (52 weeks) aspirin exposure on CRC cells, which has allowed us comprehensively characterise the metabolic impact of long-term aspirin exposure (2-4mM for 52 weeks) using proteomics, Seahorse Extracellular Flux Analysis and Stable Isotope Labelling (SIL). Using this information, we were able to identify nodes of metabolic vulnerability for further targeting, investigating the impact of combining aspirin with metabolic inhibitors in vitro and in vivo. RESULTS: We show that aspirin regulates several enzymes and transporters of central carbon metabolism and results in a reduction in glutaminolysis and a concomitant increase in glucose metabolism, demonstrating reprogramming of nutrient utilisation. We show that aspirin causes likely compensatory changes that render the cells sensitive to the glutaminase 1 (GLS1) inhibitor-CB-839. Of note given the clinical interest, treatment with CB-839 alone had little effect on CRC cell growth or survival. However, in combination with aspirin, CB-839 inhibited CRC cell proliferation and induced apoptosis in vitro and, importantly, reduced crypt proliferation in Apcfl/fl mice in vivo. CONCLUSIONS: Together, these results show that aspirin leads to significant metabolic reprogramming in colorectal cancer cells and raises the possibility that aspirin could significantly increase the efficacy of metabolic cancer therapies in CRC.

9.
Cell Metab ; 35(7): 1132-1146.e9, 2023 07 11.
Article En | MEDLINE | ID: mdl-37230079

Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity.


Autoimmune Diseases , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Autoimmunity , T-Lymphocytes , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Autoimmune Diseases/drug therapy , Hypoglycemic Agents/pharmacology
10.
Appl Plant Sci ; 11(2): e11512, 2023.
Article En | MEDLINE | ID: mdl-37051584

Premise: To genetically discriminate subspecies of the common reed (Phragmites australis), we developed real-time quantitative (qPCR) assays for identifying P. australis subsp. americanus, P. australis subsp. australis, and P. australis subsp. berlandieri. Methods and Results: Utilizing study-generated chloroplast DNA sequences, we developed three novel qPCR assays. Assays were verified on individuals of each subspecies and against two non-target species, Arundo donax and Phalaris arundinacea. One assay amplifies only P. australis subsp. americanus, one amplifies P. australis subsp. australis and/or P. australis subsp. berlandieri, and one amplifies P. australis subsp. americanus and/or P. australis subsp. australis. This protocol enhances currently available rapid identification methods by providing genetic discrimination of all three subspecies. Conclusions: The newly developed assays were validated using P. australis samples from across the United States. Application of these assays outside of this geographic range should be preceded by additional testing.

11.
J Chem Ecol ; 49(7-8): 437-450, 2023 Aug.
Article En | MEDLINE | ID: mdl-37099216

The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.


Poaceae , Wetlands , Plants , Phenotype , Phytochemicals
12.
Commun Biol ; 6(1): 186, 2023 02 17.
Article En | MEDLINE | ID: mdl-36807406

Many species of pathogenic bacteria damage tissue cells by secreting toxins that form pores in plasma membranes. Here we show that glucocorticoids increase the intrinsic protection of tissue cells against pore-forming toxins. Dexamethasone protected several cell types against the cholesterol-dependent cytolysin, pyolysin, from Trueperella pyogenes. Dexamethasone treatment reduced pyolysin-induced leakage of potassium and lactate dehydrogenase, limited actin cytoskeleton alterations, reduced plasma membrane blebbing, and prevented cytolysis. Hydrocortisone and fluticasone also protected against pyolysin-induced cell damage. Furthermore, dexamethasone protected HeLa and A549 cells against the pore-forming toxins streptolysin O from Streptococcus pyogenes, and alpha-hemolysin from Staphylococcus aureus. Dexamethasone cytoprotection was not associated with changes in cellular cholesterol or activating mitogen-activated protein kinase (MAPK) cell stress responses. However, cytoprotection was dependent on the glucocorticoid receptor and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR). Collectively, our findings imply that glucocorticoids could be exploited to limit tissue damage caused by pathogens secreting pore-forming toxins.


Cytoprotection , Glucocorticoids , Humans , Bacteria/metabolism , Cholesterol/metabolism , Dexamethasone
13.
J Theor Biol ; 557: 111325, 2023 01 21.
Article En | MEDLINE | ID: mdl-36356943

A primary driver of species extinctions and declining biodiversity is loss and fragmentation of habitats owing to human activities. Many studies spanning a wide diversity of taxa have described the relationship between population density and habitat patch area, i.e., the density-area relationship (DAR), as positive, neutral, negative or some combination of the three. However, the mechanisms responsible for these relationships remain elusive. We employ a theoretical spatially explicit population model built upon the reaction-diffusion framework with absorbing boundary conditions to model a habitat specialist dwelling in islands of habitat surrounded by a hostile matrix. We consider patches with a convex or non-convex geometry. Our results show that a single species following logistic-type population growth exhibits a strictly positive and continuous DAR. However, when multiple asymptotically stable steady states are preset in the system, a discontinuous DAR arises. In the case of two species governed by diffusive Lotka-Volterra growth and competitive interactions, we observe that overall DAR structure can be either (1) positive, (2) positive for small areas and neutral for large, or (3) hump-shaped, i.e., positive for area below a threshold and negative for area above. Patch complexity such as non-convex geometry can cause discontinuities in DAR slope for a single species and create qualitatively different patterns in a competitive system as compared to a convex patch. We also compared our theoretical results with two empirical studies (Anolis lizards on islands and crossbills and pine squirrels in forest fragments) where the pragmatic view of DAR fails to give a mechanistic understanding of what was observed. Close qualitative agreement between theoretical and observed DAR indicates that our model gives a reasonable explanation of the mechanisms underpinning DAR found in those studies. From a conservation perspective, the DAR is crucial to the identification of valuable habitat fragments that favor high abundance and the design of a reserve for a target species. When it comes to protecting a single species, these results suggest that there is unlikely to be a simple solution and that conservation decisions should always be made on a case-by-case basis.


Biodiversity , Lizards , Humans , Animals , Extinction, Biological , Forests , Population Density
14.
Clin Exp Immunol ; 208(2): 132-146, 2022 06 11.
Article En | MEDLINE | ID: mdl-35348641

Mandatory maternal metabolic and immunological changes are essential to pregnancy success. Parallel changes in metabolism and immune function make immunometabolism an attractive mechanism to enable dynamic immune adaptation during pregnancy. Immunometabolism is a burgeoning field with the underlying principle being that cellular metabolism underpins immune cell function. With whole body changes to the metabolism of carbohydrates, protein and lipids well recognised to occur in pregnancy and our growing understanding of immunometabolism as a determinant of immunoinflammatory effector responses, it would seem reasonable to expect immune plasticity during pregnancy to be linked to changes in the availability and handling of multiple nutrient energy sources by immune cells. While studies of immunometabolism in pregnancy are only just beginning, the recognised bi-directional interaction between metabolism and immune function in the metabolic disorder obesity might provide some of the earliest insights into the role of immunometabolism in immune plasticity in pregnancy. Characterised by chronic low-grade inflammation including in pregnant women, obesity is associated with numerous adverse outcomes during pregnancy and beyond for both mother and child. Concurrent changes in metabolism and immunoinflammation are consistently described but any causative link is not well established. Here we provide an overview of the metabolic and immunological changes that occur in pregnancy and how these might contribute to healthy versus adverse pregnancy outcomes with special consideration of possible interactions with obesity.


Inflammation , Obesity , Female , Humans , Pregnancy
15.
Front Immunol ; 13: 815775, 2022.
Article En | MEDLINE | ID: mdl-35154132

Many species of bacteria produce toxins such as cholesterol-dependent cytolysins that form pores in cell membranes. Membrane pores facilitate infection by releasing nutrients, delivering virulence factors, and causing lytic cell damage - cytolysis. Oxysterols are oxidized forms of cholesterol that regulate cellular cholesterol and alter immune responses to bacteria. Whether oxysterols also influence the protection of cells against pore-forming toxins is unresolved. Here we tested the hypothesis that oxysterols stimulate the intrinsic protection of epithelial cells against damage caused by cholesterol-dependent cytolysins. We treated epithelial cells with oxysterols and then challenged them with the cholesterol-dependent cytolysin, pyolysin. Treating HeLa cells with 27-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, or 7ß-hydroxycholesterol reduced pyolysin-induced leakage of lactate dehydrogenase and reduced pyolysin-induced cytolysis. Specifically, treatment with 10 ng/ml 27-hydroxycholesterol for 24 h reduced pyolysin-induced lactate dehydrogenase leakage by 88%, and reduced cytolysis from 74% to 1%. Treating HeLa cells with 27-hydroxycholesterol also reduced pyolysin-induced leakage of potassium ions, prevented mitogen-activated protein kinase cell stress responses, and limited alterations in the cytoskeleton. Furthermore, 27-hydroxycholesterol reduced pyolysin-induced damage in lung and liver epithelial cells, and protected against the cytolysins streptolysin O and Staphylococcus aureus α-hemolysin. Although oxysterols regulate cellular cholesterol by activating liver X receptors, cytoprotection did not depend on liver X receptors or changes in total cellular cholesterol. However, oxysterol cytoprotection was partially dependent on acyl-CoA:cholesterol acyltransferase (ACAT) reducing accessible cholesterol in cell membranes. Collectively, these findings imply that oxysterols stimulate the intrinsic protection of epithelial cells against pore-forming toxins and may help protect tissues against pathogenic bacteria.


Bacteria/chemistry , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Hemolysin Proteins/toxicity , Oxysterols/pharmacology , Virulence Factors/toxicity , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Epithelial Cells/metabolism , HeLa Cells , Hemolysin Proteins/chemistry , Humans , Virulence Factors/chemistry
17.
J Am Vet Med Assoc ; 259(S2): 1-3, 2021 12 15.
Article En | MEDLINE | ID: mdl-34910682

In collaboration with the American College of Veterinary Pathologists.


Pathology, Veterinary , Veterinarians , Animals , Humans , United States
18.
Nat Commun ; 12(1): 6338, 2021 11 03.
Article En | MEDLINE | ID: mdl-34732719

Rare, recurrent balanced translocations occur in a variety of cancers but are often not functionally interrogated. Balanced translocations with the immunoglobulin heavy chain locus (IGH; 14q32) in chronic lymphocytic leukemia (CLL) are infrequent but have led to the discovery of pathogenic genes including CCND1, BCL2, and BCL3. Following identification of a t(X;14)(q28;q32) translocation that placed the mature T cell proliferation 1 gene (MTCP1) adjacent to the immunoglobulin locus in a CLL patient, we hypothesized that this gene may have previously unrecognized importance. Indeed, here we report overexpression of human MTCP1 restricted to the B cell compartment in mice produces a clonal CD5+/CD19+ leukemia recapitulating the major characteristics of human CLL and demonstrates favorable response to therapeutic intervention with ibrutinib. We reinforce the importance of genetic interrogation of rare, recurrent balanced translocations to identify cancer driving genes via the story of MTCP1 as a contributor to CLL pathogenesis.


Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Translocation, Genetic , Adult , Aged , Aged, 80 and over , Animals , B-Cell Lymphoma 3 Protein , Cyclin D1 , Female , Gene Expression Regulation , Genes, Immunoglobulin Heavy Chain , Humans , Immunoglobulin Heavy Chains/genetics , Male , Mice , Mice, Inbred C57BL , Middle Aged , Oncogenes/genetics , Proto-Oncogene Proteins c-bcl-2
19.
FASEB J ; 35(10): e21889, 2021 10.
Article En | MEDLINE | ID: mdl-34569656

Many species of pathogenic bacteria secrete toxins that form pores in mammalian cell membranes. These membrane pores enable the delivery of virulence factors into cells, result in the leakage of molecules that bacteria can use as nutrients, and facilitate pathogen invasion. Inflammatory responses to bacteria are regulated by the side-chain-hydroxycholesterols 27-hydroxycholesterol and 25-hydroxycholesterol, but their effect on the intrinsic protection of cells against pore-forming toxins is unclear. Here, we tested the hypothesis that 27-hydroxycholesterol and 25-hydroxycholesterol help protect cells against pore-forming toxins. We treated bovine endometrial epithelial and stromal cells with 27-hydroxycholesterol or 25-hydroxycholesterol, and then challenged the cells with pyolysin, which is a cholesterol-dependent cytolysin from Trueperella pyogenes that targets these endometrial cells. We found that treatment with 27-hydroxycholesterol or 25-hydroxycholesterol protected both epithelial and stomal cells against pore formation and the damage caused by pyolysin. The oxysterols limited pyolysin-induced leakage of potassium and lactate dehydrogenase from cells, and reduced cytoskeletal changes and cytolysis. This oxysterol cytoprotection against pyolysin was partially dependent on reducing cytolysin-accessible cholesterol in the cell membrane and on activating liver X receptors. Treatment with 27-hydroxycholesterol also protected the endometrial cells against Staphylococcus aureus α-hemolysin. Using mass spectrometry, we found 27-hydroxycholesterol and 25-hydroxycholesterol in uterine and follicular fluid. Furthermore, epithelial cells released additional 25-hydroxycholesterol in response to pyolysin. In conclusion, both 27-hydroxycholesterol and 25-hydroxycholesterol increased the intrinsic protection of bovine endometrial cells against pore-forming toxins. Our findings imply that side-chain-hydroxycholesterols may help defend the endometrium against pathogenic bacteria.


Bacteria/chemistry , Bacterial Proteins/toxicity , Endometrium/metabolism , Hemolysin Proteins/toxicity , Hydroxycholesterols/pharmacology , Virulence Factors/toxicity , Animals , Bacterial Proteins/chemistry , Cattle , Female , Hemolysin Proteins/chemistry , Stromal Cells/metabolism , Virulence Factors/chemistry
20.
AoB Plants ; 13(4): plab045, 2021 Aug.
Article En | MEDLINE | ID: mdl-34394906

Separate introductions or post-introduction evolution may lead to multiple invader genotypes or cytotypes that differ in growth rates, biomass or chemical profile responses (phenotype) to a range of environments. If the invader has high trait plasticity to a range of resource levels, then sediment N or P enrichment may enhance invasiveness. However, the ways in which ploidy, plasticity, and available N or P interact are unknown for most species despite the potential to explain spread and impacts by invaders with multiple introduced lineages. We conducted a common garden experiment with four triploid and six diploid populations of Butomus umbellatus, collected from across its invasive range in the USA. Plants were grown under different N or P nutrient levels (4, 40, 200, 400 mg L-1 N; 0.4, 4, 40 mg L-1 P) and we measured reaction norms for biomass, clonal reproduction and tissue chemistry. Contrary to our expectation, triploid B. umbellatus plants were less plastic to variation in N or P than diploid B. umbellatus in most measured traits. Diploid plants produced 172 % more reproductive biomass and 57 % more total biomass across levels of N, and 158 % more reproductive biomass and 33 % more total biomass across P than triploid plants. Triploid plants had lower shoot:root ratios and produced 30 % and 150 % more root biomass than diploid plants in response to increases in N and P, respectively. Tissue chemistry differed between cytotypes but plasticity was similar; N was 8 % higher and C:N ratio was 30 % lower in triploid than diploid plants across levels of N and plant parts, and N was 22 % higher and C:N ratio 27 % lower across levels of P and plant parts. Our results highlight differences in nutrient response between cytotypes of a widespread invader, and we call for additional field studies to better understand the interaction of nutrients and ploidy during invasion.

...