Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37588000

RESUMEN

The magnetic ground state of the pyrochlore Yb2GaSbO7 has remained an enigma for nearly a decade. The persistent spin fluctuations observed by muon spin relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of Yb2GaSbO7 to elucidate the central physics at play. Through DC and AC magnetic susceptibility, heat capacity, and neutron scattering experiments, we observe evidence for a dynamical ground state that makes Yb2GaSbO7 a promising candidate for disorder-induced spin-liquid or spin-singlet behaviour. This state is quite fragile, being tuned to a splayed ferromagnet in a modest magnetic field µ0Hc∼1.5T.

2.
J Phys Condens Matter ; 25(24): 246004, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23707984

RESUMEN

Exhibiting rich magnetic behaviour and potentially multiferroic properties, the dugganites, a Te(6+) containing subgroup of the langasite series, are an attractive family of compounds for future study. It was recently shown that Pb-bearing members of the dugganite series undergo distortions away from the P321 symmetry that is characteristic of the langasites. Here, we detail the consequences these distortions have on the magnetism exhibited by Pb3TeCo3V2O14 and Pb3TeCo3P2O14, solving the magnetic structures of both compounds with respect to a new supercell. Using neutron scattering and magnetic susceptibility measurements, we show that small applied magnetic fields can seriously perturb the delicate magnetic states in both of these systems. This is further demonstrated by presenting how doping P(5+) onto the nonmagnetic V(5+) site completely changes the magnetic structure from either of the end series members. Finally, it is shown using inelastic neutron scattering and magnetic susceptibility measurements that Pb3TeCo3V2O14 can be characterized using a model for isosceles trimers, which do not exist in the previously reported P321 subcell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA