Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(20): 203002, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829076

RESUMEN

Auger electron spectroscopy is an omnipresent experimental tool in many fields of fundamental research and applied science. The determination of the kinetic energies of the Auger electrons yields information about the element emitting the electron and its chemical environment at the time of emission. Here, we present an experimental approach to determine Auger spectra for emitter sites in the vicinity of a positive elementary charge based on electron-electron-electron and electron-electron-photon coincidence spectroscopy. We observe a characteristic redshift of the Auger spectrum caused by the Coulomb interaction with the charged environment. Our results are relevant for the interpretation of Auger spectra of extended systems like large molecules, clusters, liquids, and solids, in particular in high-intensity radiation fields which are nowadays routinely available, e.g., at x-ray free-electron laser facilities. The effect has been widely ignored in the literature so far, and some interpretations of Auger spectra from clusters might need to be revisited.

2.
Phys Chem Chem Phys ; 24(4): 2656-2663, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35029607

RESUMEN

We studied the iron(II) phthalocyanine molecule in the gas-phase. It is a complex transition organometallic compound, for which, the characterization of its electronic ground state is still debated more than 50 years after the first published study. Here, we show that to determine its electronic ground state, one needs a large corpus of data sets and a consistent theoretical methodology to simulate them. By simulating valence and core-shell electron spectra, we determined that the ground state is a 3Eg and that the ligand-to-metal charge transfer has a large influence on the spectra.

3.
Phys Chem Chem Phys ; 20(6): 4415-4421, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29372210

RESUMEN

Hydride molecular ions are key ingredients of the interstellar chemistry since they are precursors of more complex molecules. In regions located near a soft X-ray source these ions may resonantly absorb an X-ray photon which triggers a complex chain of reactions. In this work, we simulate ab initio the X-ray absorption spectrum, Auger decay processes and the subsequent fragmentation dynamics of two hydride molecular ions, namely CH2+ and CH3+. We show that these ions feature strong X-ray absorption resonances which relax through Auger decay within 7 fs. The doubly-charged ions thus formed mostly dissociate into smaller ionic carbon fragments: in the case of CH2+, the dominant products are either C+/H+/H or CH+/H+. For CH3+, the system breaks primary into CH2+ and H+, which provides a new route to form CH2+ near a X-ray source. Furthermore, our simulations provide the branching ratios of the final products formed after the X-ray absorption as well as their kinetic and internal energy distributions. Such data can be used in the chemistry models of the interstellar medium.

4.
J Phys Chem Lett ; 8(1): 7-12, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28052677

RESUMEN

Photoionization of a buckminsterfullerene ion is investigated using an ion trap and a merged beam setup coupled to synchrotron radiation beamlines and compared to theoretical calculations. Absolute measurements derived from the ion trap experiment allow discrepancies concerning the photoionization cross section of C60+ to be solved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...