Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(20): 6017-6022, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723148

RESUMEN

The photoluminescence spectrum of a single-layer boron nitride remains elusive, marked by enigmatic satellites that hint at significant but unidentified exciton-phonon coupling. Here, by employing a first-principles approach based on the many-body cumulant expansion of the charge response, we calculate the optical absorption and photoluminescence of a single-layer boron nitride. We identify the specific exciton-phonon scattering channels and unravel their impact on the optical absorption and photoluminescence spectra, thereby providing an interpretation of the experimental features. Finally, we show that, even in a strongly polar material such as h-BN monolayer, the electron-hole interaction responsible for the excitonic effect results in the cancellation of the Frölich interaction at small phonon momenta. This effect is captured only if the invariance of the exciton-phonon matrix elements under unitary transformations in the Bloch function manifold is preserved in the calculation.

2.
J Phys Condens Matter ; 31(33): 334001, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31071706

RESUMEN

Within recent developments of density functional theory, its numerical implementation and of the superconducting density functional theory is nowadays possible to predict the superconducting critical temperature, [Formula: see text], with sufficient accuracy to anticipate the experimental verification. In this paper we present an analytical derivation of the isotope coefficient within the superconducting density functional theory. We calculate the partial derivative of [Formula: see text] with respect to atomic masses. We verified the final expression by means of numerical calculations of isotope coefficient in monatomic superconductors (Pb) as well as polyatomic superconductors (CaC6). The results confirm the validity of the analytical derivation with respect to the finite difference methods, with considerable improvement in terms of computational time and calculation accuracy. Once the critical temperature is calculated (at the reference mass(es)), various isotope exponents can be simply obtained in the same run. In addition, we provide the expression of interesting quantities like partial derivatives of the deformation potential, phonon frequencies and eigenvectors with respect to atomic masses, which can be useful for other derivations and applications.

3.
Phys Rev Lett ; 116(6): 066803, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26919006

RESUMEN

Low-dimensional materials differ from their bulk counterparts in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal boron nitride, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.

4.
J Phys Condens Matter ; 27(11): 113204, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25738755

RESUMEN

The investigation of the exciton dispersion (i.e. the exciton energy dependence as a function of the momentum carried by the electron-hole pair) is a powerful approach to identify the exciton character, ranging from the strongly localised Frenkel to the delocalised Wannier-Mott limiting cases. We illustrate this possibility at the example of four prototypical molecular solids (picene, pentacene, tetracene and coronene) on the basis of the parameter-free solution of the many-body Bethe-Salpeter equation. We discuss the mixing between Frenkel and charge-transfer excitons and the origin of their Davydov splitting in the framework of many-body perturbation theory and establish a link with model approaches based on molecular states. Finally, we show how the interplay between the electronic band dispersion and the exchange electron-hole interaction plays a fundamental role in setting the nature of the exciton. This analysis has a general validity holding also for other systems in which the electron wavefunctions are strongly localized, as in strongly correlated insulators.


Asunto(s)
Electrones , Compuestos Policíclicos/química , Absorción Fisicoquímica , Modelos Moleculares , Fenómenos Ópticos , Teoría Cuántica
5.
Phys Rev Lett ; 113(21): 216401, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25479507

RESUMEN

Using femtosecond time-resolved photoelectron spectroscopy we demonstrate that photoexcitation transforms monoclinic VO2 quasi-instantaneously into a metal. Thereby, we exclude an 80 fs structural bottleneck for the photoinduced electronic phase transition of VO2. First-principles many-body perturbation theory calculations reveal a high sensitivity of the VO2 band gap to variations of the dynamically screened Coulomb interaction, supporting a fully electronically driven isostructural insulator-to-metal transition. We thus conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.


Asunto(s)
Modelos Químicos , Óxidos/química , Compuestos de Vanadio/química , Transición de Fase , Procesos Fotoquímicos , Espectroscopía de Fotoelectrones/métodos
6.
Phys Rev Lett ; 104(22): 226804, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20867194

RESUMEN

Using first principles many-body theory methods (GW+Bethe-Salpeter equation) we demonstrate that the optical properties of graphane are dominated by localized charge-transfer excitations governed by enhanced electron correlations in a two-dimensional dielectric medium. Strong electron-hole interaction leads to the appearance of small radius bound excitons with spatially separated electron and hole, which are localized out of plane and in plane, respectively. The presence of such bound excitons opens the path towards an excitonic Bose-Einstein condensate in graphane that can be observed experimentally.


Asunto(s)
Electrones , Grafito/química , Transporte de Electrón , Hidrogenación , Modelos Moleculares , Conformación Molecular , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA