Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 788: 136836, 2022 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-35963476

RESUMEN

Psychedelics, also known as classical hallucinogens, affect processes related to perception, cognition and sensory processing mostly via the serotonin 5-HT2A receptor (5-HT2AR). This class of psychoactive substances, which includes lysergic acid diethylamide (LSD), psilocybin, mescaline and the substituted amphetamine 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), is receiving renewed attention for their potential therapeutic properties as it relates to psychiatric conditions such as depression and substance use disorders. Current studies focused on the potentially clinical effects of psychedelics on human subjects tend to exclude sex as a biological variable. Much of the understanding of psychedelic pharmacology is derived from rodent models, but most of this preclinical research has only focused on male mice. Here we tested the effects of DOI on head-twitch behavior (HTR) - a mouse behavioral proxy of human psychedelic potential - in male and female mice. DOI elicited more HTR in female as compared to male C57BL/6J mice, a sex-specific exacerbated behavior that was not observed in 129S6/SvEv animals. Volinanserin (or M100907) - a 5-HT2AR antagonist - fully prevented DOI-induced HTR in male and female C57BL/6J mice. Accumulation of inositol monophosphate (IP1) in the frontal cortex upon DOI administration showed no sex-related effect in C57BL/6J mice. However, the pharmacokinetic properties of DOI differed among sexes - brain and plasma concentrations of DOI were lower 30 and 60 min after drug administration in female as compared to male C57BL/6J mice. Together, these results suggest strain-dependent and sex-related differences in the behavioral and pharmacokinetic profiles of the 5-HT2AR agonist DOI in C57BL/6J mice, and support the importance of studying sex as a biological variable in preclinical psychedelic research.


Asunto(s)
Alucinógenos , Anfetamina/farmacología , Animales , Conducta Animal , Femenino , Fluorobencenos , Alucinógenos/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Piperidinas , Receptor de Serotonina 5-HT2A , Serotonina/farmacología
3.
Neuropsychopharmacology ; 44(2): 455-456, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401942

RESUMEN

Following the publication of this article Figs. 3b, c were published incorrectly. Also in sub-panel c of Fig. 4, 'Chronic cloza ine' should read 'Chronic clozapine'.

4.
Neuropsychopharmacology ; 44(2): 443-454, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30038413

RESUMEN

Preclinical findings in rodent models pointed toward activation of metabotropic glutamate 2/3 (mGlu2/3) receptors as a new pharmacological approach to treat psychosis. However, more recent studies failed to show clinical efficacy of mGlu2/3 receptor agonism in schizophrenia patients. We previously proposed that long-term antipsychotic medication restricted the therapeutic effects of these glutamatergic agents. However, little is known about the molecular mechanism underlying the potential repercussion of previous antipsychotic exposure on the therapeutic performance of mGlu2/3 receptor agonists. Here we show that this maladaptive effect of antipsychotic treatment is mediated mostly via histone deacetylase 2 (HDAC2). Chronic treatment with the antipsychotic clozapine led to a decrease in mouse frontal cortex mGlu2 mRNA, an effect that required expression of both HDAC2 and the serotonin 5-HT2A receptor. This transcriptional alteration occurred in association with HDAC2-dependent repressive histone modifications at the mGlu2 promoter. We found that chronic clozapine treatment decreased via HDAC2 the capabilities of the mGlu2/3 receptor agonist LY379268 to activate G-proteins in the frontal cortex of mice. Chronic clozapine treatment blunted the antipsychotic-related behavioral effects of LY379268, an effect that was not observed in HDAC2 knockout mice. More importantly, co-administration of the class I and II HDAC inhibitor SAHA (vorinostat) preserved the antipsychotic profile of LY379268 and frontal cortex mGlu2/3 receptor density in wild-type mice. These findings raise concerns on the design of previous clinical studies with mGlu2/3 agonists, providing the rationale for the development of HDAC2 inhibitors as a new epigenetic-based approach to improve the currently limited response to treatment with glutamatergic antipsychotics.


Asunto(s)
Antipsicóticos/farmacología , Clozapina/farmacología , Lóbulo Frontal/efectos de los fármacos , Histona Desacetilasa 2/metabolismo , Trastornos Psicóticos/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Animales , Antipsicóticos/uso terapéutico , Clozapina/uso terapéutico , Modelos Animales de Enfermedad , Lóbulo Frontal/metabolismo , Histona Desacetilasa 2/genética , Ratones , Ratones Noqueados , Trastornos Psicóticos/tratamiento farmacológico , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
5.
Mol Phylogenet Evol ; 130: 198-210, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30347238

RESUMEN

Chiasmocleis is the most species-rich genus of Neotropical microhylids. Herein, we provide the first comprehensive multilocus phylogeny for the genus, including all but 3 of the 34 recognized species and multiple individuals per species. We discuss cryptic speciation, species discovery, patterns of morphological evolution, and provide a historical biogeographic analysis to account for the current distribution of the genus. Diversification of Chiasmocleis from other New World microhylids began during the Eocene, app. 40 mya, in forested areas, and current diversity seems to be a product of recurrent connections between the Atlantic Forest and Amazonia. Small-sized species evolved independently three times in Chiasmocleis. Furthermore, the extremely small-bodied (i.e. miniaturized) species with associated loss of digits, phalanges, and pectoral girdle cartilages evolved only once and are restricted to Amazonia. Using the phylogeny, we recognized three subgenera within Chiasmocleis: Chiasmocleis Méhely, 1904, Relictus subg. nov., and Syncope Walker, 1973. The recognition of the subgenus Syncope informs future research on patterns of miniaturization in the genus, and the subgenus Relictus highlights isolation of an endemic and species-poor lineage to the Atlantic Forest, early (about 40 mya) in the history of Chiasmocleis.


Asunto(s)
Anuros/anatomía & histología , Anuros/clasificación , Bosques , Filogenia , Animales , Anuros/genética , Brasil
6.
Zootaxa ; 4514(4): 487-500, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30486190

RESUMEN

Among New World direct-developing frogs belonging to the clade Brachycephaloidea (= Terraranae), there are several genera with uncertain phylogenetic placements. One notable example is the genus Niceforonia Goin Cochran 1963, which includes three species that are endemic to Colombia. Three specimens of the species Niceforonia nana were collected and for the first time the genus is included in a molecular phylogenetic analysis of mitochondrial (mtDNA; 12S and 16S) and nuclear (nucDNA; TYR and RAG1) markers. Molecular phylogenetic inference based on concatenated and separate mtDNA and nucDNA analyses recovered Niceforonia nana nested within Hypodactylus Hedges et al. 2008, rendering the latter genus paraphyletic. Consequently, herein we place the genus Hypodactylus in the synonymy of Niceforonia to resolve the paraphyly and place Niceforonia in the subfamily Hypodactylinae. Based on our revised concept of the genus Niceforonia we conducted preliminary morphological comparisons using specimens and literature descriptions. Finally, Nicefornia nana is quite divergent from other species of Niceforonia (uncorrected genetic distances of ca. 10% 16S and 7% TYR) suggesting that further taxonomic revision may be warranted.


Asunto(s)
Anuros , Filogenia , Animales , Núcleo Celular , Colombia , ADN Mitocondrial
7.
Neuroscience ; 388: 102-117, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30025863

RESUMEN

Antipsychotic drugs, including both typical such as haloperidol and atypical such as clozapine, remain the current standard for schizophrenia treatment. These agents are relatively effective in treating hallucinations and delusions. However, cognitive deficits are at present essentially either persistent or exacerbated following chronic antipsychotic drug exposure. This underlines the need of new therapeutic approaches to improve cognition in treated schizophrenia patients. Our previous findings suggested that upregulation of histone deacetylase 2 (HDAC2) expression upon chronic antipsychotic treatment may lead to negative effects on cognition and cortical synaptic structure. Here we tested different phenotypes of psychosis, synaptic plasticity, cognition and antipsychotic drug action in HDAC2 conditional knockout (HDAC2-cKO) mice and controls. Conditional depletion of HDAC2 function in glutamatergic pyramidal neurons led to a protective phenotype against behavior models induced by psychedelic and dissociative drugs, such as DOI and MK801, respectively. Immunoreactivity toward synaptophysin, which labels presynaptic terminals of functional synapses, was decreased in the frontal cortex of control mice chronically treated with clozapine - an opposite effect occurred in HDAC2-cKO mice. Chronic treatment with the class I and class II HDAC inhibitor SAHA prevented via HDAC2 the disruptive effects of MK801 on recognition memory. Additionally, chronic SAHA treatment affected transcription of numerous plasticity-related genes in the frontal cortex of control mice, an effect that was not observed in HDAC2-cKO animals. Together, these findings suggest that HDAC2 may represent a novel target to improve synaptic plasticity and cognition in treated schizophrenia patients.


Asunto(s)
Antipsicóticos/farmacología , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Vorinostat/farmacología , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Cognición/efectos de los fármacos , Cognición/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Histona Desacetilasa 2/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Psicosis Inducidas por Sustancias/tratamiento farmacológico , Psicosis Inducidas por Sustancias/psicología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Distribución Aleatoria , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA