Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 130
1.
Muscle Nerve ; 69(6): 719-729, 2024 Jun.
Article En | MEDLINE | ID: mdl-38593477

INTRODUCTION/AIMS: Biomarkers have shown promise in amyotrophic lateral sclerosis (ALS) research, but the quest for reliable biomarkers remains active. This study evaluates the effect of debamestrocel on cerebrospinal fluid (CSF) biomarkers, an exploratory endpoint. METHODS: A total of 196 participants randomly received debamestrocel or placebo. Seven CSF samples were to be collected from all participants. Forty-five biomarkers were analyzed in the overall study and by two subgroups characterized by the ALS Functional Rating Scale-Revised (ALSFRS-R). A prespecified model was employed to predict clinical outcomes leveraging biomarkers and disease characteristics. Causal inference was used to analyze relationships between neurofilament light chain (NfL) and ALSFRS-R. RESULTS: We observed significant changes with debamestrocel in 64% of the biomarkers studied, spanning pathways implicated in ALS pathology (63% neuroinflammation, 50% neurodegeneration, and 89% neuroprotection). Biomarker changes with debamestrocel show biological activity in trial participants, including those with advanced ALS. CSF biomarkers were predictive of clinical outcomes in debamestrocel-treated participants (baseline NfL, baseline latency-associated peptide/transforming growth factor beta1 [LAP/TGFß1], change galectin-1, all p < .01), with baseline NfL and LAP/TGFß1 remaining (p < .05) when disease characteristics (p < .005) were incorporated. Change from baseline to the last measurement showed debamestrocel-driven reductions in NfL were associated with less decline in ALSFRS-R. Debamestrocel significantly reduced NfL from baseline compared with placebo (11% vs. 1.6%, p = .037). DISCUSSION: Following debamestrocel treatment, many biomarkers showed increases (anti-inflammatory/neuroprotective) or decreases (inflammatory/neurodegenerative) suggesting a possible treatment effect. Neuroinflammatory and neuroprotective biomarkers were predictive of clinical response, suggesting a potential multimodal mechanism of action. These results offer preliminary insights that need to be confirmed.


Amyotrophic Lateral Sclerosis , Biomarkers , Neurofilament Proteins , Humans , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/diagnosis , Biomarkers/cerebrospinal fluid , Male , Female , Middle Aged , Neurofilament Proteins/cerebrospinal fluid , Aged , Adult , Double-Blind Method , Treatment Outcome
2.
Muscle Nerve ; 69(4): 477-489, 2024 Apr.
Article En | MEDLINE | ID: mdl-38305586

INTRODUCTION/AIMS: Genetics is an important risk factor for amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Recent findings demonstrate that in addition to specific genetic mutations, structural variants caused by genetic instability can also play a causative role in ALS. Genomic instability can lead to deletions, duplications, insertions, inversions, and translocations in the genome, and these changes can sometimes lead to fusion of distinct genes into a single transcript. Gene fusion events have been studied extensively in cancer; however, they have not been thoroughly investigated in ALS. The aim of this study was to determine whether gene fusions are present in ALS. METHODS: Gene fusions were identified using STAR Fusion v1.10.0 software in bulk RNA-Seq data from human postmortem samples from publicly available data sets from Target ALS and the New York Genome Center ALS Consortium. RESULTS: We report the presence of gene fusion events in several brain regions as well as in spinal cord samples in ALS. Although most gene fusions were intra-chromosomal events between neighboring genes and present in both ALS and control samples, there was a significantly greater number of unique gene fusions in ALS compared to controls. Lastly, we identified specific gene fusions with a significant burden in ALS, that were absent from both control samples and known cancer gene fusion databases. DISCUSSION: Collectively, our findings reveal an enrichment of gene fusions in ALS and suggest that these events may be an additional genetic cause linked to ALS pathogenesis.


Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Motor Neurons/pathology , Gene Fusion
3.
Neurology ; 101(7): e690-e698, 2023 08 15.
Article En | MEDLINE | ID: mdl-37344230

BACKGROUND AND OBJECTIVES: Polyunsaturated fatty acids (PUFAs) have neuroprotective and anti-inflammatory effects and could be beneficial in amyotrophic lateral sclerosis (ALS). Higher dietary intake and plasma levels of PUFAs, in particular alpha-linolenic acid (ALA), have been associated with a lower risk of ALS in large epidemiologic cohort studies, but data on disease progression in patients with ALS are sparse. We examined whether plasma levels of ALA and other PUFAs contributed to predicting survival time and functional decline in patients with ALS. METHODS: We conducted a study among participants in the EMPOWER clinical trial who had plasma samples collected at the time of randomization that were available for fatty acid analyses. Plasma fatty acids were measured using gas chromatography. We used Cox proportional hazards models and linear regression to evaluate the association of individual fatty acids with risk of death and joint rank test score of functional decline and survival. RESULTS: Fatty acid analyses were conducted in 449 participants. The mean (SD) age of these participants at baseline was 57.5 (10.7) years, and 293 (65.3%) were men; 126 (28.1%) died during follow-up. Higher ALA levels were associated with lower risk of death (age-adjusted and sex-adjusted hazard ratio comparing highest vs lowest quartile 0.50, 95% CI 0.29-0.86, p-trend = 0.041) and higher joint rank test score (difference in score according to 1 SD increase 10.7, 95% CI 0.2-21.1, p = 0.045), consistent with a slower functional decline. The estimates remained similar in analyses adjusted for body mass index, race/ethnicity, symptom duration, site of onset, riluzole use, family history of ALS, predicted upright slow vital capacity, and treatment group. Higher levels of the n-3 fatty acid eicosapentaenoic acid and the n-6 fatty acid linoleic acid were associated with a lower risk of death during follow-up. DISCUSSION: Higher levels of ALA were associated with longer survival and slower functional decline in patients with ALS. These results suggest that ALA may have a favorable effect on disease progression in patients with ALS.


Amyotrophic Lateral Sclerosis , Fatty Acids, Omega-3 , Male , Humans , Middle Aged , Female , Amyotrophic Lateral Sclerosis/drug therapy , Fatty Acids, Unsaturated , Fatty Acids, Omega-6 , Disease Progression , Fatty Acids
4.
Article En | MEDLINE | ID: mdl-37254449

Objective: To determine the target population and optimize the study design of the phase 3 clinical trial evaluating reldesemtiv in participants with amyotrophic lateral sclerosis (ALS).Methods: We evaluated the phase 2 study of reldesemtiv, FORTITUDE-ALS, to inform eligibility criteria and design features that would increase trial efficiency and reduce participant burden of the phase 3 trial.Results: In FORTITUDE-ALS, the effect of reldesemtiv was particularly evident among participants in the intermediate- and fast-progressing tertiles for pre-study disease progression. These participants most often had symptom onset ≤24 months and an ALS Functional Rating Scale-Revised (ALSFRS-R) total score ≤44 at baseline. Compared with the overall FORTITUDE-ALS population, the subgroup meeting these criteria declined by fewer ALSFRS-R points at 12 weeks (difference of least-squares mean [SE] versus placebo 1.84 [0.49] and 0.87 [0.35] for the overall population). These inclusion criteria will be used for the phase 3 clinical trial, COURAGE-ALS, in which the primary outcome is the change in ALSFRS-R total score at week 24. We also measure durable medical equipment use and evaluate strength in muscles expected to change rapidly. To reduce participant burden, study visits are often remote, and strength evaluation is simplified to reduce time and effort.Conclusions: In COURAGE-ALS, the phase 3 clinical trial to evaluate reldesemtiv, the sensitivity of detecting a potential treatment effect may be increased by defining eligibility criteria that limit the proportion of participants who have slower disease progression. Implementing remote visits and simplifying strength measurements will reduce both site and participant burden.ClinicalTrials.gov identifiers: NCT03160898 (FORTITUDE-ALS) and NCT04944784 (COURAGE-ALS).


Amyotrophic Lateral Sclerosis , Courage , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/drug therapy , Double-Blind Method , Probability , Disease Progression
5.
Neurology ; 100(23): e2398-e2408, 2023 06 06.
Article En | MEDLINE | ID: mdl-37085329

BACKGROUND AND OBJECTIVES: Late-phase clinical trials for neurodegenerative diseases have a low probability of success. In this study, we introduce an algorithm that optimizes the planning of interim analyses for clinical trials in amyotrophic lateral sclerosis (ALS) to better use the time and resources available and minimize the exposure of patients to ineffective or harmful drugs. METHODS: A simulation-based algorithm was developed to determine the optimal interim analysis scheme by integrating prior knowledge about the success rate of ALS clinical trials with drug-specific information obtained in early-phase studies. Interim analysis schemes were optimized by varying the number and timing of interim analyses, together with their decision rules about when to stop a trial. The algorithm was applied retrospectively to 3 clinical trials that investigated the efficacy of diaphragm pacing or ceftriaxone on survival in patients with ALS. Outcomes were additionally compared with conventional interim designs. RESULTS: We evaluated 183-1,351 unique interim analysis schemes for each trial. Application of the optimal designs correctly established lack of efficacy, would have concluded all studies 1.2-19.4 months earlier (reduction of 4.6%-57.7% in trial duration), and could have reduced the number of randomized patients by 1.7%-58.1%. By means of simulation, we illustrate the efficiency for other treatment scenarios. The optimized interim analysis schemes outperformed conventional interim designs in most scenarios. DISCUSSION: Our algorithm uses prior knowledge to determine the uncertainty of the expected treatment effect in ALS clinical trials and optimizes the planning of interim analyses. Improving futility monitoring in ALS could minimize the exposure of patients to ineffective or harmful treatments and result in significant ethical and efficiency gains.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Retrospective Studies , Computer Simulation , Medical Futility , Uncertainty , Research Design
6.
Muscle Nerve ; 67(6): 456-463, 2023 06.
Article En | MEDLINE | ID: mdl-36929648

INTRODUCTION/AIMS: Expanded access protocols (EAPs) are a Food and Drug Administration (FDA)-regulated pathway for granting access to investigational products (IPs) to individuals with serious diseases who are ineligible for clinical trials. There is limited information about the use of EAPs in amyotrophic lateral sclerosis (ALS); the aim of this report is to share the design, operational features, and costs of an EAP program for ALS. METHODS: The program was launched in 2018 at a single center. In alignment with FDA guidance, protocols were designed as individual (single participant) or intermediate size. Inclusion criteria were broad (e.g., no restrictions due to long disease duration or low vital capacity). Safety information was collected in all EAPs. Selected biomarkers were collected in nine of the EAPs. RESULTS: From July 2018 through February 2022, 17 EAPs were submitted for FDA and institutional review board (IRB) approval. The mean time from submission to approval from the FDA and IRB were 24 days and 37 days, respectively. A total of 164 participants were enrolled and, of these, 77 participants were still receiving IP as of February 2022. The mean duration of participation in an EAP was 12.6 mo. No drug-related serious adverse events were reported from any of the EAPs. Average site cost was $613.47 per participant per month, not including IP costs. CONCLUSION: EAPs provide a framework through which access to IP can be safely provided to people with ALS who do not qualify for clinical trials. Site resources are needed to launch and maintain these programs.


Amyotrophic Lateral Sclerosis , United States , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Time Factors , United States Food and Drug Administration
7.
Muscle Nerve ; 67(5): 378-386, 2023 05.
Article En | MEDLINE | ID: mdl-36840949

INTRODUCTION/AIMS: Higher urate levels are associated with improved ALS survival in retrospective studies, however whether raising urate levels confers a survival advantage is unknown. In the Safety of Urate Elevation in Amyotrophic Lateral Sclerosis (SURE-ALS) trial, inosine raised serum urate and was safe and well-tolerated. The SURE-ALS2 trial was designed to assess longer term safety. Functional outcomes and a smartphone application were also explored. METHODS: Participants were randomized 2:1 to inosine (n = 14) or placebo (n = 9) for 20 weeks, titrated to serum urate of 7-8 mg/dL. Primary outcomes were safety and tolerability. Functional outcomes were measured with the Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS-R). Mobility and ALSFRS-R were also assessed by a smartphone application. RESULTS: During inosine treatment, mean urate ranged 5.68-6.82 mg/dL. Treatment-emergent adverse event (TEAE) incidence was similar between groups (p > .10). Renal TEAEs occurred in three (21%) and hypertension in one (7%) of participants randomized to inosine. Inosine was tolerated in 71% of participants versus placebo 67%. Two participants (14%) in the inosine group experienced TEAEs deemed related to treatment (nephrolithiasis); one was a severe adverse event. Mean ALSFRS-R decline did not differ between groups (p = .69). Change in measured home time was similar between groups. Digital and in-clinic ALSFRS-R correlated well. DISCUSSION: Inosine met pre-specified criteria for safety and tolerability. A functional benefit was not demonstrated in this trial designed for safety and tolerability. Findings suggested potential utility for a smartphone application in ALS clinical and research settings.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Uric Acid , Retrospective Studies , Inosine/therapeutic use , Double-Blind Method
8.
Neurology ; 100(9): 430-436, 2023 02 28.
Article En | MEDLINE | ID: mdl-36456201

The SARS-CoV-2 (COVID-19) viral pandemic dramatically affected human health, health care delivery, health care workers, and health care research worldwide. The field of academic neurology was no exception. In this 2022 Presidential Plenary, we discuss the challenges faced by neurologists and neuroscientists professionally and personally. We review the threats posed by the pandemic to neuroscience research activities, materials, productivity, and funding. We then discuss the impact of the pandemic on clinical trials for neurologic diseases. Restrictions to patient enrolment due to limited in-person access to laboratory testing, imaging, and study visits led to delay in both clinical trial enrolment and study completion but also to innovative new means to engage clinical trial participants remotely and to strategies to critically appraise the frequency and design of trial-related patient evaluations. Clinical care was also challenged by initial pandemic prioritization of urgent visit and inpatient care and the rapid pivot to telehealth for most other neurology care encounters. Front-line neurology care teams faced their fears of infection, with the first few months of the pandemic being characterized by uncertainty, inconsistent national health care strategies, limited personal protective equipment, and an alarming rate of human illness and death caused by COVID-19. The personal and societal toll of the pandemic is incalculable. Across research and clinical neurology providers, women and particularly those with young families juggled the impossible balance of career and family care as schools closed and children required home-based education. Shining through this dark time are lessons that should shape a brighter future for our field. We are resilient, and the advances in neuroscience and neurology care continue to advance improved neurologic outcomes. The National Institutes of Health devised multiple support strategies for researchers to help bridge the pandemic. Telehealth, clinical trial designs that are more participant-centric with remote monitoring, and flexible work schedules are strategies to rebalance overworked lives and improve our engagement with our patients. As we re-emerge, we have the chance to reframe our field.


COVID-19 , Neurology , Child , Humans , Female , SARS-CoV-2 , Pandemics , Neurology/methods , Delivery of Health Care
9.
JAMA Neurol ; 79(12): 1312-1318, 2022 12 01.
Article En | MEDLINE | ID: mdl-36251310

Importance: Clinical trial activity in amyotrophic lateral sclerosis (ALS) is dramatically increasing; as a result, trial modifications have been introduced to improve efficiency, outcome measures have been reassessed, and considerable discussion about the level of data necessary to advance a drug to approval has occurred. This review discusses what recent pivotal studies can teach the community about these topics. Observations: By restricting inclusion and exclusion criteria, recent trials have enrolled populations distinct from previous studies. This has led to efficacy signals being observed in studies that are smaller and shorter than was thought feasible previously. However, such trials raise questions about generalizability of results. Small trials with equivocal clinical results also raise questions about the data necessary to lead to regulatory approval. The ALS Functional Rating Scale-Revised remains the most commonly used primary outcome measure; this review discusses innovations in its use. Blood neurofilament levels can predict prognosis in ALS and may be a sensitive indicator of biologic effect; current knowledge does not yet support its use as a primary outcome. Conclusions and Relevance: It is now possible to use specific inclusion criteria to recruit a homogeneous patient population progressing at a specific rate; this will likely impact trials in the future. Generalizability of results on limited populations remains a concern. Although clinical outcomes remain the most appropriate primary outcome measures, fluid markers reflecting biologically important processes will assume more importance as more is learned about the association between such markers and clinical end points. The benefit of use of analytic strategies, such as responder analyses, is still uncertain.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/drug therapy , Outcome Assessment, Health Care , Biomarkers , Prognosis
10.
N Engl J Med ; 387(12): 1099-1110, 2022 09 22.
Article En | MEDLINE | ID: mdl-36129998

BACKGROUND: The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS: In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS: A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was -6.98 with tofersen and -8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], -3.2 to 5.5; P = 0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was -6.0 in the early-start cohort and -9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non-multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture-related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS: In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.).


Amyotrophic Lateral Sclerosis , Oligonucleotides, Antisense , Superoxide Dismutase-1 , Adult , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Double-Blind Method , Humans , Injections, Spinal , Neurofilament Proteins/blood , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Recovery of Function/drug effects , Superoxide Dismutase-1/cerebrospinal fluid , Superoxide Dismutase-1/genetics
11.
Brain Commun ; 4(4): fcac207, 2022.
Article En | MEDLINE | ID: mdl-36043141

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by motor neuron degeneration. Approximately 90% of cases occur sporadically with no known cause while 10% are familial cases arising from known inherited genetic mutations. In vivo studies have predominantly utilized transgenic models harbouring amyotrophic lateral sclerosis-associated gene mutations, which have not hitherto elucidated mechanisms underlying motor neuron death or identified therapeutic targets specific to sporadic amyotrophic lateral sclerosis. Here we provide evidence demonstrating pathogenic differences in CSF from patients with sporadic amyotrophic lateral sclerosis and familial amyotrophic lateral sclerosis patients with mutations in SOD1, C9orf72 and TARDBP. Using a novel CSF-mediated animal model, we show that intrathecal delivery of sporadic amyotrophic lateral sclerosis patient-derived CSF into the cervical subarachnoid space in adult wild-type mice induces permanent motor disability which is associated with hallmark pathological features of amyotrophic lateral sclerosis including motor neuron loss, cytoplasmic TDP-43 translocation, reactive astrogliosis and microglial activation. Motor impairments are not induced by SOD1, C9orf72 or TARDBP CSF, although a moderate degree of histopathological change occurs in C9orf72 and TARDBP CSF-injected mice. By conducting a series of CSF filtration studies and global proteomic analysis of CSF, we identified apolipoprotein B-100 in sporadic amyotrophic lateral sclerosis CSF as the putative agent responsible for inducing motor disability, motor neuron degeneration and pathological translocation of TDP-43. Apolipoprotein B-100 alone is sufficient to recapitulate clinical and pathological outcomes in vivo and induce death of human induced pluripotent stem cell-derived motor neurons in vitro. Targeted removal of apolipoprotein B-100 from sporadic amyotrophic lateral sclerosis CSF via filtration or immunodepletion successfully attenuated the neurotoxic capacity of sporadic amyotrophic lateral sclerosis CSF to induce motor disability, motor neuron death, and TDP-43 translocation. This study presents apolipoprotein B-100 as a novel therapeutic target specific for the predominant sporadic form of amyotrophic lateral sclerosis and establishes proof-of-concept to support CSF pheresis as a therapeutic strategy for mitigating neurotoxicity in sporadic amyotrophic lateral sclerosis.

12.
Front Aging Neurosci ; 14: 914017, 2022.
Article En | MEDLINE | ID: mdl-35837482

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with ill-defined pathogenesis, calling for urgent developments of new therapeutic regimens. Herein, we applied PandaOmics, an AI-driven target discovery platform, to analyze the expression profiles of central nervous system (CNS) samples (237 cases; 91 controls) from public datasets, and direct iPSC-derived motor neurons (diMNs) (135 cases; 31 controls) from Answer ALS. Seventeen high-confidence and eleven novel therapeutic targets were identified and will be released onto ALS.AI (http://als.ai/). Among the proposed targets screened in the c9ALS Drosophila model, we verified 8 unreported genes (KCNB2, KCNS3, ADRA2B, NR3C1, P2RY14, PPP3CB, PTPRC, and RARA) whose suppression strongly rescues eye neurodegeneration. Dysregulated pathways identified from CNS and diMN data characterize different stages of disease development. Altogether, our study provides new insights into ALS pathophysiology and demonstrates how AI speeds up the target discovery process, and opens up new opportunities for therapeutic interventions.

13.
Muscle Nerve ; 66(4): 421-425, 2022 10.
Article En | MEDLINE | ID: mdl-35765222

INTRODUCTION/AIMS: Lipid peroxidation is thought to play a biologically important role in motor neuron death in amyotrophic lateral sclerosis (ALS). 11,11 Di-deuterated linoleic ethyl ester (RT001) prevents lipid peroxidation in cellular and mitochondrial membranes. Herein we report on the use of RT001 under expanded access (EA). METHODS: We provided RT001 to patients with ALS via EA at a single site. The starting dose was 2.88 g/day, which was increased to to 8.64 g/day as tolerated. Participants were not eligible for alternative clinical trials. Participants were followed for adverse events and pharmacokinetic (PK) parameters were measured approximately 3 months after RT001 initiation. RESULTS: Sixteen participants received RT001 (5.6 ± 1.6 g/day; dose range, 1.92 to 8.64 g/day) for a mean period of 10.8 ± 7.1 months. After 3 months of treatment, PK studies showed that RT001 was absorbed, metabolized, and incorporated into red blood cell membranes at concentrations expected to be therapeutic based on in vitro models. The most common adverse events were gastrointestinal, including diarrhea, which occurred in 25% of the participants, and were considered possibly related to RT001. One participant (6%) discontinued due to an adverse event. Ten serious adverse events occurred: these events were recognized complications of ALS and none were attributed to treatment with RT001. DISCUSSION: RT001 was administered safely to a small group of people living with ALS in the context of an EA protocol. Currently, there is an ongoing randomized, double-blind, controlled study of RT001 in ALS.


Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/complications , Esters/therapeutic use , Fatty Acids , Humans , Linoleic Acids/therapeutic use , Randomized Controlled Trials as Topic
15.
Article En | MEDLINE | ID: mdl-35225121

ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here we review butyrate and its different chemical forms (butyrates). Butyrates have plausible mechanisms for slowing ALS progression and positive pre-clinical studies. One trial suggests that sodium phenylbutyrate (NaPB) in combination with Tauroursodeoxycholic acid (TUDCA) can slow ALS progression and prolong survival, but the specific contribution of NaPB toward this effect is unclear. Butyrates appear reasonably safe for use in humans. Based on the above information, we support a trial of a butyrate in PALS, but we cannot yet recommend one as a treatment.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Butyrates/therapeutic use
16.
Ann Clin Transl Neurol ; 9(1): 50-66, 2022 01.
Article En | MEDLINE | ID: mdl-35014217

OBJECTIVE: Dual leucine zipper kinase (DLK), which regulates the c-Jun N-terminal kinase pathway involved in axon degeneration and apoptosis following neuronal injury, is a potential therapeutic target in amyotrophic lateral sclerosis (ALS). This first-in-human study investigated safety, tolerability, and pharmacokinetics (PK) of oral GDC-0134, a small-molecule DLK inhibitor. Plasma neurofilament light chain (NFL) levels were explored in GDC-0134-treated ALS patients and DLK conditional knockout (cKO) mice. METHODS: The study included placebo-controlled, single and multiple ascending-dose (SAD; MAD) stages, and an open-label safety expansion (OLE) with adaptive dosing for up to 48 weeks. RESULTS: Forty-nine patients were enrolled. GDC-0134 (up to 1200 mg daily) was well tolerated in the SAD and MAD stages, with no serious adverse events (SAEs). In the OLE, three study drug-related SAEs occurred: thrombocytopenia, dysesthesia (both Grade 3), and optic ischemic neuropathy (Grade 4); Grade ≤2 sensory neurological AEs led to dose reductions/discontinuations. GDC-0134 exposure was dose-proportional (median half-life = 84 h). Patients showed GDC-0134 exposure-dependent plasma NFL elevations; DLK cKO mice also exhibited plasma NFL compared to wild-type littermates. INTERPRETATION: This trial characterized GDC-0134 safety and PK, but no adequately tolerated dose was identified. NFL elevations in GDC-0134-treated patients and DLK cKO mice raised questions about interpretation of biomarkers affected by both disease and on-target drug effects. The safety profile of GDC-0134 was considered unacceptable and led to discontinuation of further drug development for ALS. Further work is necessary to understand relationships between neuroprotective and potentially therapeutic effects of DLK knockout/inhibition and NFL changes in patients with ALS.


Amyotrophic Lateral Sclerosis/drug therapy , MAP Kinase Kinase Kinases/antagonists & inhibitors , Neurofilament Proteins/blood , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Adult , Aged , Amyotrophic Lateral Sclerosis/blood , Animals , Biomarkers/blood , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , MAP Kinase Kinase Kinases/deficiency , Male , Mice , Mice, Knockout , Middle Aged , Outcome Assessment, Health Care , Protein Kinase Inhibitors/pharmacokinetics
17.
Neurooncol Adv ; 4(1): vdab186, 2022.
Article En | MEDLINE | ID: mdl-35088051

BACKGROUND: Glioblastoma (GBM) has a 5-year survival rate of 3%-5%. GBM treatment includes maximal resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ). Cytochrome C oxidase (CcO) is a mitochondrial enzyme involved in the mechanism of resistance to TMZ. In a prior retrospective trial, CcO activity in GBMs inversely correlated with clinical outcome. The current Cyto-C study was designed to prospectively evaluate and validate the prognostic value of tumor CcO activity in patients with newly diagnosed primary GBM, and compared to the known prognostic value of MGMT promoter methylation status. METHODS: This multi-institutional, blinded, prospective biomarker study enrolled 152 patients with newly diagnosed GBM who were to undergo surgical resection and would be candidates for standard of care. The primary end point was overall survival (OS) time, and the secondary end point was progression-free survival (PFS) time. Tumor CcO activity and MGMT promoter methylation status were assayed in a centralized laboratory. RESULTS: OS and PFS did not differ by high or low tumor CcO activity, and the prognostic validity of MGMT promoter methylation was confirmed. Notably, a planned exploratory analysis suggested that the combination of low CcO activity and MGMT promoter methylation in tumors may be predictive of long-term survival. CONCLUSIONS: Tumor CcO activity alone was not confirmed as a prognostic marker in GBM patients. However, the combination of low CcO activity and methylated MGMT promoter may reveal a subgroup of GBM patients with improved long-term survival that warrants further evaluation. Our work also demonstrates the importance of performing large, multi-institutional, prospective studies to validate biomarkers. We also discuss lessons learned in assembling such studies.

18.
Article En | MEDLINE | ID: mdl-34392765

A roundtable convened in July 2020 examined issues concerning respiratory support in amyotrophic lateral sclerosis (ALS), with reference to the potential for an early-phase orally administered medication that might either postpone the introduction of noninvasive ventilation (NIV) and/or enhance the benefits to be gained from it. Attention was also given to the impact of the COVID-19 pandemic on usual practice in the assessment and management of ALS-related respiratory difficulties. Implementation of NIV marks a step-change in clinical status for patients and a major increase in burden for caregivers. All means to ease this transition should be explored: an oral therapy that supported respiratory function and patients' independence and sense of well-being would aid discussions to facilitate the eventual successful introduction of NIV. Assessment of a candidate oral therapy that might support respiratory function in ALS patients would be aided by the development of improved patient-reported outcome measures for robust quantification of treatment effect and quality of life. Such instruments could also be used to monitor patients' status during the COVID-19 pandemic, averting some of the risks of face-to-face assessment plus the patient burden and costs of traditional methods. Several oral candidate therapies have recently failed to meet their primary endpoints in clinical trials. However, understanding of the underlying physiology and appropriate trial design have grown and will inform future developments in this field.


Amyotrophic Lateral Sclerosis , COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/therapy , Humans , Pandemics , Quality of Life , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , SARS-CoV-2
19.
Brain Pathol ; 32(2): e13035, 2022 03.
Article En | MEDLINE | ID: mdl-34779076

Although the molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are not yet fully understood, several studies report alterations in tau phosphorylation in both sporadic and familial ALS. Recently, we have demonstrated that phosphorylated tau at S396 (pTau-S396) is mislocalized to synapses in ALS motor cortex (mCTX) and contributes to mitochondrial dysfunction. Here, we demonstrate that while there was no overall increase in total tau, pTau-S396, and pTau-S404 in ALS post-mortem mCTX, total tau and pTau-S396 were increased in C9ORF72-ALS. Additionally, there was a significant decrease in pTau-T181 in ALS mCTX compared controls. Furthermore, we leveraged the ALS Knowledge Portal and Project MinE data sets and identified ALS-specific genetic variants across MAPT, the gene encoding tau. Lastly, assessment of cerebrospinal fluid (CSF) samples revealed a significant increase in total tau levels in bulbar-onset ALS together with a decrease in CSF pTau-T181:tau ratio in all ALS samples, as reported previously. While increases in CSF tau levels correlated with a faster disease progression as measured by the revised ALS functional rating scale (ALSFRS-R), decreases in CSF pTau-T181:tau ratio correlated with a slower disease progression, suggesting that CSF total tau and pTau-T181 ratio may serve as biomarkers of disease in ALS. Our findings highlight the potential role of pTau-T181 in ALS, as decreases in CSF pTau-T181:tau ratio may reflect the significant decrease in pTau-T181 in post-mortem mCTX. Taken together, these results indicate that tau phosphorylation is altered in ALS post-mortem mCTX as well as in CSF and, importantly, the newly described pathogenic or likely pathogenic variants identified in MAPT in this study are adjacent to T181 and S396 phosphorylation sites further highlighting the potential role of these tau functional domains in ALS.


Amyotrophic Lateral Sclerosis , Motor Cortex , Amyotrophic Lateral Sclerosis/genetics , Biomarkers/cerebrospinal fluid , Disease Progression , Humans , Motor Cortex/metabolism , Phosphorylation , tau Proteins/metabolism
20.
Muscle Nerve ; 65(3): 291-302, 2022 03.
Article En | MEDLINE | ID: mdl-34890069

INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative illness with great unmet patient need. We aimed to evaluate whether mesenchymal stem cells induced to secrete high levels of neurotrophic factors (MSC-NTF), a novel autologous cell-therapy capable of targeting multiple pathways, could safely slow ALS disease progression. METHODS: This randomized, double-blind, placebo-controlled study enrolled ALS participants meeting revised El Escorial criteria, revised ALS Functional Rating Scale (ALSFRS-R) ≥25 (screening) and ≥3 ALSFRS-R points decline prior to randomization. Participants received three treatments of MSC-NTF or placebo intrathecally. The primary endpoint evaluated efficacy of MSC-NTF through a responder analysis and safety. A change in disease progression post-treatment of ≥1.25 points/mo defines a clinical response. A pre-specified analysis leveraged baseline ALSFRS-R of 35 as a subgroup threshold. RESULTS: Overall, MSC-NTF treatment was well tolerated; there were no safety concerns. Thirty-three percent of MSC-NTF and 28% of placebo participants met clinical response criteria at 28 wk (odds ratio [OR] = 1.33, P = .45); thus, the primary endpoint was not met. A pre-specified analysis of participants with baseline ALSFRS-R ≥ 35 (n = 58) showed a clinical response rate at 28 wk of 35% MSC-NTF and 16% placebo (OR = 2.6, P = .29). Significant improvements in cerebrospinal biomarkers of neuroinflammation, neurodegeneration, and neurotrophic factor support were observed with MSC-NTF, with placebo unchanged. DISCUSSION: The study did not reach statistical significance on the primary endpoint. However, a pre-specified subgroup suggests that MSC-NTF participants with less severe disease may have retained more function compared to placebo. Given the unmet patient need, the results of this trial warrant further investigation.


Amyotrophic Lateral Sclerosis , Mesenchymal Stem Cells , Amyotrophic Lateral Sclerosis/diagnosis , Double-Blind Method , Humans , Nerve Growth Factors/metabolism , Transplantation, Autologous
...