Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(37): 9380-9387, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39240654

RESUMEN

Improving fluorescence emission efficiency is essential to develop novel luminescent materials. However, the low water solubility of conventional fluorescent dyes is a serious obstacle to broadening the application scope. Herein, a green protocol have been proposed: Two poorly water-soluble naphthalimide derivatives MONI and MANI with high fluorescent quantum yields (larger than 0.95 in toluene solution) were loaded in three different sizes of cyclodextrin (CD; α, ß, γ-CD) with high water solubility. To further check the feasibility of the proposal, density functional theory (DFT) and time dependent-DFT (TD-DFT) methods combining the Own N-layer Integrated molecular Orbital molecular Mechanics (ONIOM) model with dispersion correction were employed to investigate the geometric and electronic structures of complexes CD·MXNI (X = N, O) in the excited-state process. TD-DFT calculations predict that the fantastic emission behavior of MXNI can be reserved after binding with CD, even improving fluorescent intensity in aqueous solution. Basis set superposition error (BSSE) correction and symmetry adapted perturbation theory (SAPT) were adopted to estimate the complexation energies and weak noncovalent interactions. The middle-sized ß-CD is the perfect candidate to allow fluorescent molecules to settle into its cavity, forming an inclusion complex. Energy decomposition analysis (EDA) indicates that dispersion is superior to electrostatics interaction in embedding-type ß-CD·MXNI, while it is contrary in α,γ-CD·MXNI. NMR calculations further prove the existence of a strong intermolecular hydrogen bond interaction between host and guest. Weak interactions that limited molecular vibration and hampered the nonradiative inactivation channel are conducive to the enhanced emission intensity.

2.
J Org Chem ; 89(16): 11334-11346, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39094225

RESUMEN

Oxetane has been extensively studied for its applications in medicinal chemistry and as a reactive intermediate in synthesis. Experiments report a Cu-catalyzed [2 + 2] photocycloaddition of acetone and norbornene to oxetane, which is proposed to deviate from the conventional Paternò-Büchi reaction. However, its mechanism at the atomic level is not clear. In this study, we used a combination of multistate complete active space second-order perturbation theory (MS-CASPT2) and density functional theory to systematically investigate the reaction mechanism and elucidate the factors contributing to the diastereomeric selectivity. Initially, the formation of the TpCu(Norb) complex is achieved by strong interaction between tris(pyrazolyl)borate Cu(I) (TpCu) and norbornene in the ground state (S0). Upon photoexcitation, TpCu(Norb) eventually decays to the T1 state, in which TpCu(Norb) attacks acetone to initiate subsequent reactions and produces final endo- or exo-oxetane products. All these reactions initially involve the C-C bond formation in the T1 state thereto leading to a ring-opening intermediate. This intermediate then undergoes a nonradiative transition to the S0 state, producing a five-membered ring intermediate, from which the C-O bond is formed, leading to the experimentally dominant exo-product. In contrast, the endo-oxetane formation requires a rearrangement process after the C-C bond is formed because of the large steric effects. As a consequence, the different reaction pathways generating exo- and endo-products exhibit large differences in the free-energy barriers, which results in a diastereomeric selectivity observed experimentally. Additionally, the nonradiative transition is found to play an important role in facilitating these reaction steps. The present computational study provides valuable mechanistic insights into Cu-catalyzed photocycloaddition reactions.

3.
J Phys Chem A ; 128(34): 7145-7157, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39145596

RESUMEN

Iminothioindoxyl (ITI) is a new class of photoswitch that exhibits many excellent properties including well-separated absorption bands in the visible region for both conformers, ultrafast Z to E photoisomerization as well as the millisecond reisomerization at room temperature for the E isomer, and switchable ability in both solids and various solvents. However, the underlying ultrafast photoisomerization mechanism at the atomic level remains unclear. In this work, we have employed a combination of high-level RMS-CASPT2-based static electronic structure calculations and nonadiabatic dynamics simulations to investigate the ultrafast photoisomerization dynamics of ITI. Based on the minimum-energy structures, minimum-energy conical intersections, linear interpolation internal coordinate paths, and nonadiabatic dynamics simulations, the overall photoisomerization scenario of ITI upon excitation is established. Upon excitation around 416 nm, the molecule will be excited to the S2 state considering its close energy to the experimentally measured absorption maximum and larger oscillator strength, from which ultrafast decay of S2 to S1 state can take place efficiently with a time constant of 62 fs. However, the photoisomerization is not likely to complete in the S2 state since the dihedral associated with the Z to E isomerization changes little during the relaxation. Upon relaxing to the S1 state, the molecule will decay to the S0 state ultrafast with a time constant of 232 fs. In contrast, the decay of the S1 state is important for the isomerization considering that the dihedral related to the isomerization of the hopping structures is close to 90°. Therefore, the S1/S0 intersection region should be important for the isomerization of ITI. Arriving at the S0 state, the molecule can either go back to the original Z reactant or isomerize to the E products. At the end of the 500 fs simulation time, the E configuration accounts for nearly 37% of the final structures. Moreover, the photoisomerization mechanism is different from the isomerization mechanism in the ground state; i.e., instead of the inversion mechanism in the ground state, the photoisomerization prefers the rotation mechanism. Our results not only agree well with previous experimental studies but also provide some novel insights that could be helpful for future improvements in the performance of the ITI photoswitches.

4.
Angew Chem Int Ed Engl ; : e202407135, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018249

RESUMEN

Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron ß-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθµ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.

5.
J Chem Theory Comput ; 20(9): 3426-3439, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38656202

RESUMEN

Herein, we have used the "on-the-fly" ring-polymer surface-hopping simulation method with the centroid approximation (RPSH-CA), in combination with the multireference OM2/MRCI electronic structure calculations to study the photoinduced dynamics of a green fluorescent protein (GFP) chromophore analogue in the gas phase, i.e., o-HBI, at 50, 100, and 300 K with 1, 5, 10, and 15 beads (3600 1 ps trajectories). The electronic structure calculations identified five new minimum-energy conical intersection (MECI) structures, which, together with the previous one, play crucial roles in the excited-state decay dynamics of o-HBI. It is also found that the excited-state intramolecular proton transfer (ESIPT) occurs in an ultrafast manner and is completed within 20 fs in all the simulation conditions because there is no barrier associated with this ESIPT process in the S1 state. However, the other excited-state dynamical results are strongly related to the number of beads. At 50 and 100 K, the nuclear quantum effects (NQEs) are very important; therefore, the excited-state dynamical results change significantly with the bead number. For example, the S1 decay time deduced from time-dependent state populations becomes longer as the bead number increases. Nevertheless, an essentially convergent trend is observed when the bead number is close to 10. In contrast, at 300 K, the NQEs become weaker and the above dynamical results converge very quickly even with 1 bead. Most importantly, the NQEs seriously affect the excited-state decay mechanism of o-HBI. At 50 and 100 K, most trajectories decay to the S0 state via perpendicular keto MECIs, whereas, at 300 K, only twisted keto MECIs are responsible for the excited-state decay. The present work not only comprehensively explores the temperature-dependent photoinduced dynamics of o-HBI, but also demonstrates the importance and necessity of NQEs in nonadiabatic dynamics simulations, especially at relatively low temperatures.

6.
J Phys Chem A ; 128(17): 3311-3320, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38654690

RESUMEN

Herein, we employed linear-response time-dependent functional theory nonadiabatic dynamic simulations to explore the photoinduced exciton dynamics of a chiral single-walled carbon nanotube CNT(6,5) covalently doped with a 4-nitrobenzyl group (CNT65-NO2). The results indicate that the introduction of a sp3 defect leads to the splitting of the degenerate VBM/VBM-1 and CBM/CBM+1 states. Both the VBM upshift and the CBM downshift are responsible for the experimentally observed redshifted E11* trapping state. The simulations reveal that the photoinduced exciton relaxation dynamics completes within 500 fs, which is consistent with the experimental work. On the other hand, we also conducted the nonadiabatic carrier (electron and hole) dynamic simulations, which completely ignore the excitonic effects. The comparison demonstrates that excitonic effects are indispensable. Deep analyses show that such effects induce several dark states, which play an important role in regulating the photoinduced dynamics of CNT65-NO2. The present work demonstrates the importance of including excitonic effects in simulating photoinduced processes of carbon nanotubes. In addition, it not only rationalizes previous experiments but also provides valuable insights that will help in the future rational design of novel covalently doped carbon nanotubes with superior photoluminescent properties.

7.
Angew Chem Int Ed Engl ; 63(5): e202315300, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38085965

RESUMEN

Photocatalytic CO2 reduction is one of the best solutions to solve the global energy crisis and to realize carbon neutralization. The tetradentate phosphine-bipyridine (bpy)-phosphine (PNNP)-type Ir(III) photocatalyst, Mes-IrPCY2, was reported with a high HCOOH selectivity but the photocatalytic mechanism remains elusive. Herein, we employ electronic structure methods in combination with radiative, nonradiative, and electron transfer rate calculations, to explore the entire photocatalytic cycle to either HCOOH or CO, based on which a new mechanistic scenario is proposed. The catalytic reduction reaction starts from the generation of the precursor metal-to-ligand charge transfer (3 MLCT) state. Subsequently, the divergence happens from the 3 MLCT state, the single electron transfer (SET) and deprotonation process lead to the formation of one-electron-reduced species and Ir(I) species, which initiate the reduction reaction to HCOOH and CO, respectively. Interestingly, the efficient occurrence of proton or electron transfer reduces barriers of critical steps. In addition, nonadiabatic transitions play a nonnegligible role in the cycle. We suggest a lower free-energy barrier in the reaction-limiting step and the very efficient SET in 3 MLCT are cooperatively responsible for a high HCOOH selectivity. The gained mechanistic insights could help chemists to understand, regulate, and design photocatalytic CO2 reduction reaction of similar function-integrated molecular photocatalyst.

8.
Photochem Photobiol ; 100(2): 380-392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38041414

RESUMEN

We have employed the highly accurate multistate complete active space second-order perturbation theory (MS-CASPT2) method to investigate the photoinduced excited state relaxation properties of one unnatural base, namely Z. Upon excitation to the S2 state of Z, the internal conversion to the S1 state would be dominant. From the S1 state, two intersystem crossing paths leading to the T2 and T1 states and one internal conversion path to the S0 state are possible. However, considering the large barrier to access the S1 /S0 conical intersection and the strong spin-orbit coupling between S1 and T2 states (>40 cm-1 ), the intersystem crossing to the triplet manifolds is predicted to be more preferred. Arriving at the T2 state, the internal conversion to the T1 state and the intersystem crossing back to the S1 state are both possible considering the S1 /T2 /T1 three-state intersection near the T2 minimum. Upon arrival at the T1 state, the deactivation to S0 can be efficient after overcoming a small barrier to access T1 /S0 crossing point, where the spin-orbit coupling (SOC) is as large as 39.7 cm-1 . Our present work not only provides in-depth insights into the photoinduced process of unnatural base Z, but can also help the future design of novel unnatural bases with better photostability.

9.
Phys Chem Chem Phys ; 25(44): 30627-30635, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37933177

RESUMEN

Functionalizing single-walled carbon nanotubes (SWNTs) with light-harvesting molecules is a facile way to construct donor-acceptor nanoarchitectures with intriguing optoelectronic properties. Magnesium-centered bacteriochlorin (MgBC), chlorin (MgC), and porphyrin (MgP) are a series of tetrapyrrole macrocycles comprising a central metal and four coordinated aromatic or antiaromatic five-membered rings linked by methine units, which show excellent visible light absorption. To delineate the effects of the aromaticity of coordinated rings on the optoelectronic properties of the nanocomposites, the photoinduced energy and charge transfer dynamics between Mg-centered tetrapyrroles and SWNTs are explored. The results show that excited energy transfer (EET) can occur within MgP@SWNT ascribed to the stabilization of the highest occupied molecular orbital (HOMO) in MgP with the increase of aromatic coordinated rings, while only electron transfer can take place in MgBC@SWNT and MgC@SWNT. Non-adiabatic dynamics simulations demonstrate that electron and hole transfer from MgP to SWNT is asynchronous. The electron transfer is ultrafast with a timescale of ca. 50 fs. By contrast, the hole transfer is significantly suppressed, although it can be accelerated to some extent when using a lower excitation energy of 2.2 eV as opposed to 3.1 eV. Further analysis reveals that the large energy gaps between charge-donor and charge-acceptor states play a crucial role in regulating photoexcited state relaxation dynamics. Our theoretical insights elucidate the structure-functionality interrelations between Mg-centered tetrapyrroles and SWNTs and provide a comprehensive understanding of the underlying charge transfer mechanism within MgP@SWNT nanocomposites, which paves the way for the forthcoming development of SWNT-based photo-related functional materials with targeted applications.

10.
J Chem Theory Comput ; 19(23): 8491-8522, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37984502

RESUMEN

Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.

11.
J Phys Chem Lett ; 14(44): 10025-10031, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37906639

RESUMEN

Both DFT and TD-DFT methods are used to elaborate on the excited-state properties and dual-emission mechanism of a thiolate-protected Au42 nanocluster. A three-state model (S0, S1, and T1) is proposed with respect to the results. The intersystem crossing (ISC) process from S1 to T1 benefits from a small reorganization energy due to the similar geometric structures of S1 and T1. However, the ISC process is suppressed by relatively small spin-orbit coupling resulting from the similarity of the electronic structures of S1 and T1. As a result of the counterbalance, the ISC rate is comparable with the fluorescence emission rate. In the T1 state, the phosphorescence emission prevails the reverse ISC process back to the S1 state. Taken together, fluorescence and phosphorescence are achieved simultaneously. The present work provides deep mechanistic insights to aid the rational design of NIR dual-emissive metal nanoclusters.

12.
Phys Chem Chem Phys ; 25(41): 28452-28464, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37846460

RESUMEN

Herein, we have employed a combination of the optimally tuned screened range-separated hybrid (OT-SRSH) functional, the polarizable continuum model (PCM), and nonadiabatic dynamics (NAMD) simulations to investigate the photoinduced dynamics of directly linked donor-acceptor dyads formed using zinc phthalocyanine (ZnPc) and perylenediimide (PDI), in which ZnPc is the donor while PDI is the acceptor. Our simulations aim to analyze the behavior of these dyads upon local excitation of the ZnPc moiety in the gas phase and in benzonitrile. Our findings indicate that the presence of a solvent can significantly influence the excited state dynamics of ZnPc-PDI dyads. Specifically, the polar solvent benzonitrile effectively lowers the vertical excitation energies of the charge transfer (CT) state from ZnPc to PDI. As a result, the energetic order of the locally excited (LE) states of ZnPc and the CT states is reversed compared to the gas phase. Consequently, the photoinduced electron transfer (PET) dynamics from ZnPc to PDI, which is absent in the gas phase, takes place in benzonitrile with a time constant of 10.4 ps. Importantly, our present work not only qualitatively agrees with experimental results but also provides in-depth insights into the underlying mechanisms responsible for the photoinduced dynamics of ZnPc-PDI. Moreover, this study emphasizes the importance of appropriately considering solvent effects in NAMD simulation of organic donor-acceptor systems, taking into account the distinct excited state dynamics observed in the gas phase and benzonitrile. Furthermore, the combination of the OT-SRSH functional, the PCM solvent model, and nonadiabatic dynamics simulations shows promise as a strategy for investigating the complex excited state dynamics of organic donor-acceptor systems in solvents. These findings will be valuable for the future design of novel organic donor-acceptor structures with improved performance.

13.
Phys Chem Chem Phys ; 25(43): 29603-29613, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37877743

RESUMEN

"Carbene-metal(I)-amide" (CMA) complexes have garnered significant attention due to their remarkable properties and potential TADF applications in organic electronics. However, the atomistic working mechanism is still elusive. Herein, we chose two CMA complexes, i.e., cyclic (alkyl)(amino) carbene-copper[gold](I)-carbazole (CAAC-Cu[Au]-Cz), and employed both DFT and TD-DFT methods, in combination with radiative and nonradiative rate calculations, to investigate geometric and electronic structures of these two complexes in the ground and excited states, including orbital compositions, electronic transitions, absorption and emission spectra, and the luminescence mechanism. It is found that the coplanar or perpendicular conformations are coexistent in the ground state (S0), the lowest excited singlet state (S1), and the triplet state (T1). Both the coplanar and perpendicular S1 and T1 states have similar ligand-to-ligand charge transfer (LLCT) character between CAAC and Cz, and some charge-transfer character between metal atoms and ligands, which is beneficial to minimize the singlet-triplet energy gaps (ΔEST) and increase the spin-orbit coupling (SOC). An interesting three-state (S0, S1, T1) model involving two regions (coplanar and perpendicular) is proposed to rationalize the experimental TADF phenomena in the CMA complexes. In addition to the coplanar ones, the perpendicular S1 and T1 states also play a role in promoting the repopulation of the coplanar S1 exciton, which is a primary source for the delayed fluorescence.

14.
Angew Chem Int Ed Engl ; 62(46): e202312927, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37776073

RESUMEN

The promotion of intersystem crossing (ISC) is critical for achieving a high-efficiency long-persistent luminescence (LPL) from organic materials. However, the use of a transition-metal complex for LPL materials has not been explored because it can also shorten the emission lifetime by accelerating the phosphorescence decay. Here, we report a new class of LPL materials by doping a monovalent Au-carbene complex into a boron-embedded molecular host. The donor-acceptor systems exhibit photoluminescence with both high efficiencies (>57 %) and long lifetimes (ca. 40 ms) at room temperature. It is revealed that the Au atom promotes the population of low-lying triplet excited states of the host aggregate (T1 *) which can be converted into the charge-transfer (CT) state, thereby resulting in afterglow luminescence. Moreover, the use of a chirality unit on the guest molecule results in the LPL being circularly polarized. This work illustrates that transition-metal complexes can be used for developing organic afterglow systems by exquisite control over the excited state mechanism.

15.
Chem Sci ; 14(33): 8831-8841, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37621444

RESUMEN

All-organic, heavy-atom-free photosensitizers based on thionation of nucleobases are receiving increased attention because they are easy to make, noncytotoxic, work both in the presence and absence of molecular oxygen, and can be readily incorporated into DNA and RNA. In this contribution, the DNA and RNA fluorescent probe, thieno[3,4-d]pyrimidin-4(1H)-one, has been thionated to develop thieno[3,4-d]pyrimidin-4(3H)-thione, which is nonfluorescent and absorbs near-visible radiation with about 60% higher efficiency. Steady-state absorption and emission spectra are combined with transient absorption spectroscopy and CASPT2 calculations to delineate the electronic relaxation mechanisms of both pyrimidine derivatives in aqueous and acetonitrile solutions. It is demonstrated that thieno[3,4-d]pyrimidin-4(3H)-thione efficiently populates the long-lived and reactive triplet state generating singlet oxygen with a quantum yield of about 80% independent of solvent. It is further shown that thieno[3,4-d]pyrimidin-4(3H)-thione exhibits high photodynamic efficacy against monolayer melanoma cells and cervical cancer cells both under normoxic and hypoxic conditions. Our combined spectroscopic, computational, and in vitro data demonstrate the excellent potential of thieno[3,4-d]pyrimidin-4(1H)-thione as a heavy-atom-free PDT agent and paves the way for further development of photosensitizers based on the thionation of thieno[3,4-d]pyrimidine derivatives. Collectively, the experimental and computational results demonstrate that thieno[3,4-d]pyrimidine-4(3H)-thione stands out as the most promising thiobase photosensitizer developed to this date.

16.
Sci Adv ; 9(24): eadh0198, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315147

RESUMEN

Transition metal complexes exhibiting thermally activated delayed fluorescence (TADF) remain underdeveloped for organic light-emitting diodes (OLEDs). Here, we describe a design of TADF Pd(II) complexes featuring metal-perturbed intraligand charge-transfer excited states. Two orange- and red-emitting complexes with efficiencies of 82 and 89% and lifetimes of 2.19 and 0.97 µs have been developed. Combined transient spectroscopic and theoretical studies on one complex reveal a metal-perturbed fast intersystem crossing process. OLEDs using the Pd(II) complexes show maximum external quantum efficiencies of 27.5 to 31.4% and small roll-offs down to 1% at 1000 cd m-2. Moreover, the Pd(II) complexes show exceptional operational stability with LT95 values over 220 hours at 1000 cd m-2, benefiting from the use of strong σ-donating ligands and the presence of multiple intramolecular noncovalent interactions beside their short emission lifetimes. This study demonstrates a promising approach for developing efficient and robust luminescent complexes without using the third-row transition metals.

17.
Molecules ; 28(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241962

RESUMEN

In this work, we implemented an approximate algorithm for calculating nonadiabatic coupling matrix elements (NACMEs) of a polyatomic system with ab initio methods and machine learning (ML) models. Utilizing this algorithm, one can calculate NACMEs using only the information of potential energy surfaces (PESs), i.e., energies, and gradients as well as Hessian matrix elements. We used a realistic system, namely CH2NH, to compare NACMEs calculated by this approximate PES-based algorithm and the accurate wavefunction-based algorithm. Our results show that this approximate PES-based algorithm can give very accurate results comparable to the wavefunction-based algorithm except at energetically degenerate points, i.e., conical intersections. We also tested a machine learning (ML)-trained model with this approximate PES-based algorithm, which also supplied similarly accurate NACMEs but more efficiently. The advantage of this PES-based algorithm is its significant potential to combine with electronic structure methods that do not implement wavefunction-based algorithms, low-scaling energy-based fragment methods, etc., and in particular efficient ML models, to compute NACMEs. The present work could encourage further research on nonadiabatic processes of large systems simulated by ab initio nonadiabatic dynamics simulation methods in which NACMEs are always required.

18.
Nat Chem ; 15(5): 666-676, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36894703

RESUMEN

Organosilanes are of vital importance for modern human society, having found widespread applications in functional materials, organic synthesis, drug discovery and life sciences. However, their preparation remains far from trivial, and on-demand synthesis of heteroleptic substituted silicon reagents is a formidable challenge. The generation of silyl radicals from hydrosilanes via direct hydrogen-atom-transfer (HAT) photocatalysis represents the most atom-, step-, redox- and catalyst-economic pathway for the activation of hydrosilanes. Here, in view of the green characteristics of neutral eosin Y (such as its abundance, low cost, metal-free nature, absorption of visible light and excellent selectivity), we show that using it as a direct HAT photocatalyst enables the stepwise custom functionalization of multihydrosilanes, giving access to fully substituted silicon compounds. By exploiting this strategy, we realize preferable hydrogen abstraction of Si-H bonds in the presence of active C-H bonds, diverse functionalization of hydrosilanes (for example, alkylation, vinylation, allylation, arylation, deuteration, oxidation and halogenation), and remarkably selective monofunctionalization of di- and trihydrosilanes.

19.
J Phys Chem Lett ; 14(10): 2588-2598, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36881005

RESUMEN

Herein, we have employed a combined CASPT2//CASSCF approach within the quantum mechanics/molecular mechanics (QM/MM) framework to explore the early time photoisomerization of rsEGFP2 starting from its two OFF trans states, i.e., Trans1 and Trans2. The results show similar vertical excitation energies to the S1 state in their Franck-Condon regions. Considering the clockwise and counterclockwise rotations of the C11-C9 bond, four pairs of the S1 excited-state minima and low-lying S1/S0 conical intersections were optimized, based on which we determined four S1 photoisomerization paths that are essentially barrierless to the relevant S1/S0 conical intersections leading to efficient excited-state deactivation to the S0 state. Most importantly, our work first identified multiple photoisomerization and excited-state decay paths, which must be seriously considered in the future. This work not only sheds significant light on the primary trans-cis photoisomerization of rsEGFP2 but also aids in the understanding of the microscopic mechanism of GFP-like RSFPs and the design of novel GFP-like fluorescent proteins.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Proteínas Fluorescentes Verdes/química , Isomerismo
20.
Angew Chem Int Ed Engl ; 62(22): e202300927, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36862068

RESUMEN

We describe an aromatic amide skeleton for manipulation of triplet excited states toward bright long-lived blue phosphorescence. Spectroscopic studies and theoretical calculations demonstrated that the aromatic amides can promote strong spin-orbit coupling between (π,π*) and the bridged (n,π*) states, and enable multiple channels to populate the emissive 3 (π,π*), as well as facilitate robust hydrogen bonding with polyvinyl alcohol to suppress non-radiative relaxations. Isolated inherent deep-blue (0.155, 0.056) to sky-blue (0.175, 0.232) phosphorescence with high quantum yields (up to 34.7 %) in confined films are achieved. The blue afterglow of the films can last for several seconds and are showcased in information display, anti-counterfeiting, and white light afterglow. Owing to the high population of 3 (π,π*) states, the smart aromatic amide skeleton provides an important molecular design prototype to manipulate triplet excited states for ultralong phosphorescence with various colors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA