Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
ACS Nano ; 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847586

To date, long-term and continuous ultrasonic imaging for guiding the puncture biopsy remains a challenge. In order to address this issue, a multimodality imaging and therapeutic method was developed in the present study to facilitate long-term ultrasonic and fluorescence imaging-guided precision diagnosis and combined therapy of tumors. In this regard, certain types of photoactivated gas-generating nanocontrast agents (PGNAs), capable of exhibiting both ultrasonic and fluorescence imaging ability along with photothermal and sonodynamic function, were designed and fabricated. The advantages of these fabricated PGNAs were then utilized against tumors in vivo, and high therapeutic efficacy was achieved through long-term ultrasonic imaging-guided treatment. In particular, the as-prepared multifunctional PGNAs were applied successfully for the fluorescence-based determination of patient tumor samples collected through puncture biopsy in clinics, and superior performance was observed compared to the clinically used SonoVue contrast agents that are incapable of specifically distinguishing the tumor in ex vivo tissues.

2.
Chem Commun (Camb) ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38805249

We present a facile strategy to achieve color-tunability room-temperature phosphorescence (RTP) nanoprobes by doping mineral acids (i.e., boric acid and phosphoric acid) in an organic silicon scaffold through a cross-linking process. Such RTP nanoprobes exhibit inherent tunable phosphorescence (from 420-650 nm) with long lifetime (emission lasting for ∼5-15 s, RTP lifetime: ∼0.53-2.11 s) and high quantum yields (∼13.1-43.0%). Therefore, the as-prepared nanoprobes enable multiple imaging in live cells with a high signal-to-background ratio value of ∼52.

3.
Anal Chem ; 96(16): 6467-6475, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38602368

Room temperature phosphorescence (RTP) nanoprobes play crucial roles in hypoxia imaging due to their high signal-to-background ratio (SBR) in the time domain. However, synthesizing RTP probes in aqueous media with a small size and high quantum yield remains challenging for intracellular hypoxic imaging up to present. Herein, aqueous RTP nanoprobes consisting of naphthalene anhydride derivatives, cucurbit[7]uril (CB[7]), and organosilicon are reported via supermolecular confined methods. Benefiting from the noncovalent confinement of CB[7] and hydrolysis reactions of organosilicon, such small-sized RTP nanoprobes (5-10 nm) exhibit inherent tunable phosphorescence (from 400 to 680 nm) with microsecond second lifetimes (up to ∼158.7 µs) and high quantum yield (up to ∼30%). The as-prepared RTP nanoprobes illustrate excellent intracellular hypoxia responsibility in a broad range from ∼0.1 to 21% oxygen concentrations. Compared to traditional fluorescence mode, the SBR value (∼108.69) of microsecond-range time-resolved in vitro imaging is up to 2.26 times greater in severe hypoxia (<0.1% O2), offering opportunities for precision imaging analysis in a hypoxic environment.


Heterocyclic Compounds, 2-Ring , Imidazoles , Imidazolidines , Macrocyclic Compounds , Humans , Imidazoles/chemistry , Silicon/chemistry , Nanoparticles/chemistry , Cell Hypoxia , Bridged-Ring Compounds/chemistry , Optical Imaging , Fluorescent Dyes/chemistry , Luminescent Measurements , Naphthalenes/chemistry , Time Factors , HeLa Cells
4.
Chem Commun (Camb) ; 60(30): 4060-4063, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38502544

We present a facile strategy to achieve purely organic multi-colour room-temperature phosphorescence (RTP) films by doping typical fused-ring compounds into a poly(vinyl alcohol) matrix. Such RTP films demonstrate inherent RTP emission ranging from green to red with a long lifetime and high quantum yield (QY) (lifetime: ∼0.56 ms, QY: ∼35.4%). We further exploit such high-performance RTP films for dynamic information encryption.

5.
Colloids Surf B Biointerfaces ; 237: 113834, 2024 May.
Article En | MEDLINE | ID: mdl-38479259

Precise diagnosis of complex and soft tumors is challenging, which limits appropriate treatment options to achieve desired therapeutic outcomes. However, multifunctional nano-sized contrast enhancement agents based on nanoparticles improve the diagnosis accuracy of various diseases such as cancer. Herein, a facile manganese-hafnium nanocomposites (Mn3O4-HfO2 NCs) system was designed for bimodal magnetic resonance imaging (MRI)/computed tomography (CT) contrast enhancement with a complimentary function of photodynamic therapy. The solvothermal method was used to fabricate NCs, and the average size of Mn3O4 NPs and Mn3O4-HfO2 NCs was about 7 nm and 15 nm, respectively, as estimated by TEM. Dynamic light scattering results showed good dispersion and high negative (-33 eV) zeta potential, indicating excellent stability in an aqueous medium. Mn3O4-HfO2 NCs revealed negligible toxic effects on the NCTC clone 929 (L929) and mouse colon cancer cell line (CT26), demonstrating promising biocompatibility. The synthesized Mn3O4-HfO2 NCs exhibit significant enhancement in T1-weighted magnetic resonance imaging (MRI) and X-ray computed tomography (CT), indicating the appropriateness for dual-modal MRI/CT molecular imaging probes. Moreover, ultra-small Mn3O4-HfO2 NCs show good relaxivities for MRI/CT. These nanoprobes Mn3O4-HfO2 NCs further possessed outstanding reactive oxygen species (ROS) generation ability under minute ultraviolet light (6 mW·cm-2) to ablate the colon cancer cells in vitro. Therefore, the designed multifunctional Mn3O4-HfO2 NCs were ideal candidates for cancer diagnosis and photodynamic therapy.


Colonic Neoplasms , Nanocomposites , Nanoparticles , Photochemotherapy , Mice , Animals , Manganese , Hafnium , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/drug therapy
6.
Acta Biomater ; 177: 431-443, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38307478

The noble metal NPs that are currently applied to photothermal therapy (PTT) have their photoexcitation location mainly in the NIR-I range, and the low tissue penetration limits their therapeutic effect. The complexity of the tumor microenvironment (TME) makes it difficult to inhibit tumor growth completely with a single therapy. Although TME has a high level of H2O2, the intratumor H2O2 content is still insufficient to catalyze the generation of sufficient hydroxide radicals (‧OH) to achieve satisfactory therapeutic effects. The AuPd-GOx-HA (APGH) was obtained from AuPd bimetallic nanodumbbells modified by glucose oxidase (GOx) and hyaluronic acid (HA) for photothermal enhancement of tumor starvation and cascade catalytic therapy in the NIR-II region. The CAT-like activity of AuPd alleviates tumor hypoxia by catalyzing the decomposition of H2O2 into O2. The GOx-mediated intratumoral glucose oxidation on the one hand can block the supply of energy and nutrients essential for tumor growth, leading to tumor starvation. On the other hand, the generated H2O2 can continuously supply local O2, which also exacerbates glucose depletion. The peroxidase-like activity of bimetallic AuPd can catalyze the production of toxic ‧OH radicals from H2O2, enabling cascade catalytic therapy. In addition, the high photothermal conversion efficiency (η = 50.7 %) of APGH nanosystems offers the possibility of photothermal imaging-guided photothermal therapy. The results of cell and animal experiments verified that APGH has good biosafety, tumor targeting, and anticancer effects, and is a precious metal nanotherapeutic system integrating glucose starvation therapy, nano enzyme cascade catalytic therapy, and PTT therapy. This study provides a strategy for photothermal-cascade catalytic synergistic therapy combining both exogenous and endogenous processes. STATEMENT OF SIGNIFICANCE: AuPd-GOx-HA cascade nanoenzymes were prepared as a potent cascade catalytic therapeutic agent, which enhanced glucose depletion, exacerbated tumor starvation and promoted cancer cell apoptosis by increasing ROS production through APGH-like POD activity. The designed system has promising photothermal conversion ability in the NIR-II region, simultaneously realizing photothermal-enhanced catalysis, PTT, and catalysis/PTT synergistic therapy both in vitro and in vivo. The present work provides an approach for designing and developing catalytic-photothermal therapies based on bimetallic nanoenzymatic cascades.


Hydrogen Peroxide , Neoplasms , Animals , Photothermal Therapy , Catalysis , Glucose , Glucose Oxidase , Neoplasms/therapy , Cell Line, Tumor , Tumor Microenvironment
7.
Org Lett ; 26(9): 1819-1823, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38415589

Ring expansion of strained small rings provides an efficient method for the synthesis of various high-value carbocycles and heterocycles. Here we report BF3·Et2O as both an activating reagent and fluorine source, enabling ring expansion of phosphirane and P-F bond formation. Treatment of 1-iminylphosphirane complexes with BF3·Et2O resulted in 1,2-azaphospholidines, while the reaction of 1-acylphosphirane complexes with BF3·Et2O afforded 1,2-dihydrophosphetes. The reaction path was tuned by the nucleophilicity of the N and O atoms toward the intermediate phosphenium cation.

8.
Sensors (Basel) ; 23(21)2023 Nov 02.
Article En | MEDLINE | ID: mdl-37960633

The global burden of cancer is increasing rapidly, and nanomedicine offers promising prospects for enhancing the life expectancy of cancer patients. Janus nanoparticles (JNPs) have garnered considerable attention due to their asymmetric geometry, enabling multifunctionality in drug delivery and theranostics. However, achieving precise control over the self-assembly of JNPs in solution at the nanoscale level poses significant challenges. Herein, a low-temperature reversed-phase microemulsion system was used to obtain homogenous Mn3O4-Ag2S JNPs, which showed significant potential in cancer theranostics. Structural characterization revealed that the Ag2S (5-10 nm) part was uniformly deposited on a specific surface of Mn3O4 to form a Mn3O4-Ag2S Janus morphology. Compared to the single-component Mn3O4 and Ag2S particles, the fabricated Mn3O4-Ag2S JNPs exhibited satisfactory biocompatibility and therapeutic performance. Novel diagnostic and therapeutic nanoplatforms can be guided using the magnetic component in JNPs, which is revealed as an excellent T1 contrast enhancement agent in magnetic resonance imaging (MRI) with multiple functions, such as photo-induced regulation of the tumor microenvironment via producing reactive oxygen species and second near-infrared region (NIR-II) photothermal excitation for in vitro tumor-killing effects. The prime antibacterial and promising theranostics results demonstrate the extensive potential of the designed photo-responsive Mn3O4-Ag2S JNPs for biomedical applications.


Multifunctional Nanoparticles , Nanoparticles , Neoplasms , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Nanomedicine , Drug Delivery Systems , Contrast Media , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Theranostic Nanomedicine/methods , Tumor Microenvironment
9.
ACS Nano ; 17(21): 21262-21273, 2023 11 14.
Article En | MEDLINE | ID: mdl-37870459

Enzyme mimics (EMs) with intrinsic catalysis activity have attracted enormous interest in biomedicine. However, there is a lack of environmentally adaptive EMs for sensitive diagnosis and specific catalytic therapeutics in simultaneous manners. Herein, the coordination modulation strategy is designed to synthesize silicon-based phosphorescence enzyme-mimics (SiPEMs). Specifically, the atomic-level engineered Co-N4 structure in SiPEMs enables the environment-adaptive peroxidase, oxidase, and catalase-like activities. More intriguingly, the internal Si-O networks are able to stabilize the triplet state, exhibiting long-lived phosphorescence with lifetime of 124.5 ms, suitable for millisecond-range time-resolved imaging of tumor cells and tissue in mice (with high signal-to-background ratio values of ∼60.2 for in vitro and ∼611 for in vivo). Meanwhile, the SiPEMs act as an oxidative stress amplifier, allowing the production of ·OH via cascade reactions triggered by the tumor microenvironment (∼136-fold enhancement in peroxidase catalytic efficiency); while the enzyme-mimics can scavenge the accumulation of reactive oxygen species to alleviate the oxidative damage in normal cells, they are therefore suitable for environment-adaptive catalytic treatment of cancer in specific manners. We innovate a systematic strategy to develop high-performance enzymemics, constructing a promising breakthrough for replacing traditional enzymes in cancer treatment applications.


Peroxidase , Peroxidases , Animals , Mice , Catalysis , Reactive Oxygen Species , Oxidative Stress
10.
PLoS One ; 18(5): e0285211, 2023.
Article En | MEDLINE | ID: mdl-37146052

Aerial photography is a long-range, non-contact method of target detection technology that enables qualitative or quantitative analysis of the target. However, aerial photography images generally have certain chromatic aberration and color distortion. Therefore, effective segmentation of aerial images can further enhance the feature information and reduce the computational difficulty for subsequent image processing. In this paper, we propose an improved version of Golden Jackal Optimization, which is dubbed Helper Mechanism Based Golden Jackal Optimization (HGJO), to apply multilevel threshold segmentation to aerial images. The proposed method uses opposition-based learning to boost population diversity. And a new approach to calculate the prey escape energy is proposed to improve the convergence speed of the algorithm. In addition, the Cauchy distribution is introduced to adjust the original update scheme to enhance the exploration capability of the algorithm. Finally, a novel "helper mechanism" is designed to improve the performance for escape the local optima. To demonstrate the effectiveness of the proposed algorithm, we use the CEC2022 benchmark function test suite to perform comparison experiments. the HGJO is compared with the original GJO and five classical meta-heuristics. The experimental results show that HGJO is able to achieve competitive results in the benchmark test set. Finally, all of the algorithms are applied to the experiments of variable threshold segmentation of aerial images, and the results show that the aerial photography images segmented by HGJO beat the others. Noteworthy, the source code of HGJO is publicly available at https://github.com/Vang-z/HGJO.


Algorithms , Jackals , Animals , Image Processing, Computer-Assisted/methods , Software , Photography
11.
Angew Chem Int Ed Engl ; 62(29): e202303997, 2023 07 17.
Article En | MEDLINE | ID: mdl-37148489

We report the "water-in-oil-in-water" preparation of kidney injury molecule-1-targeting supramolecular chemiluminescence (CL) reporters (PCCS), consisting of L-serine-modified poly(lactic-co-glycolic) acid (PLGA)-encapsulated peroxyoxalate (CPPO), chlorin e6 (Ce6) and superoxide dismutase (SOD), for early diagnosis and amelioration of acute kidney injury (AKI). In this system, O2 ⋅- , a biomarker of AKI, triggers the oxidation of CPPO to 1,2-dioxetanedione and subsequent CL emission via CL resonance energy transfer to Ce6. The L-serine-modified PLGA stabilizes CPPO and Ce6 via noncovalent interactions, promoting long-lived CL (half-lives: ≈1000 s). Transcriptomics analysis shows that PCCS reporters reduce the inflammatory response through glutathione metabolism and inhibition of the tumor necrosis factor signaling pathway. The reporters are able to non-invasively detect AKI at least 12 h earlier than current assays, and their antioxidant properties allow simultaneous treatment of AKI.


Acute Kidney Injury , Superoxides , Humans , Luminescence , Superoxide Dismutase/metabolism , Acute Kidney Injury/diagnosis , Lactic Acid , Early Diagnosis , Water
12.
Org Lett ; 25(1): 205-209, 2023 Jan 13.
Article En | MEDLINE | ID: mdl-36583566

Phosphenium ions [R2P]+ are important and highly reactive dicoordinate phosphorus species. Herein, we report a rearrangement of the carbocation into the phosphenium cation driven by ring strain. This phosphorus-involved Wagner-Meerwein rearrangement pathway converted the 1-acylphosphirane complex into phosphetane and 1,2-dihydrophosphete derivatives depending on the reaction temperature. The generation of the intermediate phosphenium cation was identified by the intramolecular reaction with ether, which also disclosed its strong Lewis acidity. This work expands the boundary of the phosphorus-carbon analogy.

13.
PLoS One ; 17(12): e0279249, 2022.
Article En | MEDLINE | ID: mdl-36534690

Depth image-based rendering (DIBR) is an important technology in the process of 2D-to-3D conversion. It uses texture images and related depth maps to render virtual views. While there are still some challenging problems in the current DIBR systems, such as disocclusion occurrences. Inpainting methods based on deep learning have recently shown significant improvements and generated plausible images. However, most of these methods may not deal well with the disocclusion holes in the synthesized views, because on the one hand they only treat this issue as generative inpainting after 3D warping, rather than following the full DIBR processing procedures. While on the other hand the distributions of holes on the virtual views are always around the transition regions of foreground and background, which makes them more difficult to distinguish without special constraints. Motivated by these observations, this paper proposes a novel learning-based method for stereoscopic view synthesis, in which the disocclusion regions are restored by a progressive structure reconstruction strategy instead of direct texture inpainting. Additionally, some special cues in the synthesized scenes are further exploited as constraints for the network to alleviate hallucinated structure mixtures among different layers. Extensive empirical evaluations and comparisons validate the strengths of the proposed approach and demonstrate that the model is more suitable for stereoscopic synthesis in the 2D-to-3D conversion applications.


Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods
14.
Anal Chem ; 94(20): 7264-7271, 2022 05 24.
Article En | MEDLINE | ID: mdl-35427126

Herein, we present a class of multi-functional hydrogels, which simultaneously features strong fluorescence, ultralong room-temperature phosphorescence (RTP), and excellent self-healing properties. In particular, the as-prepared hydrogels could produce strong fluorescence with a photoluminescence quantum yield (PLQY) value of 22.4%, as well as ultralong RTP (lasts for ∼20 s with phosphorescence lifetime of ∼264 ms). In addition to the superior optical performance, the as-prepared hydrogels possess excellent self-healing property, with ∼91.5% self-healing efficiency at room temperature and an increased elasticity of ∼281%. Taking advantages of these unique merits, we further exploit such high-performance hydrogels for advanced anti-counterfeiting applications. Significantly, the hydrogel-based anti-counterfeiting tags are capable of realizing multi-color static information in the spatial scale and more than five kinds of dynamic information during 15 s of the phosphorescence decay process in the temporal scale.


Hydrogels , Fluorescence
15.
Angew Chem Int Ed Engl ; 61(14): e202200172, 2022 03 28.
Article En | MEDLINE | ID: mdl-35098631

Probes featuring room-temperature phosphorescence (RTP) are promising tools for time-resolved imaging. It is worth noting that the time scale of time-resolved bioimaging generally ranges around the microsecond level, because of the short-lived emission. Herein, the first example of millisecond-range time-resolved bioimaging is illustrated, which is enabled through a kind of ultralong aqueous phosphorescence probes (i.e., cyclo-(Arg-Gly-AspD-Tyr-Cys)-conjugated zinc-doped silica nanospheres), with a RTP emission lasting for ≈5 s and a lifetime as long as 743.7 ms. We demonstrate that live cells and deep tumor tissue in mice can be specifically targeted through immune-phosphorescence imaging, with a high signal-to-background ratio (SBR) value of ≈69 for in vitro imaging, and ≈627 for in vivo imaging, respectively. We further show that, compared to that of fluorescence imaging, the SBR enhancement of millisecond-range time-resolved in vivo bioimaging is up to 105 times.


Luminescence , Neoplasms , Animals , Mice , Neoplasms/pathology , Optical Imaging , Silicon Dioxide , Zinc
16.
Adv Sci (Weinh) ; 8(21): e2102327, 2021 11.
Article En | MEDLINE | ID: mdl-34494724

The development of potent antibiotic alternatives with rapid bactericidal properties is of great importance in addressing the current antibiotic crisis. One representative example is the topical delivery of predatory bacteria to treat ocular bacterial infections. However, there is a lack of suitable methods for the delivery of predatory bacteria into ocular tissue. This work introduces cryomicroneedles (cryoMN) for the ocular delivery of predatory Bdellovibrio bacteriovorus (B. bacteriovorus) bacteria. The cryoMN patches are prepared by freezing B. bacteriovorus containing a cryoprotectant medium in a microneedle template. The viability of B. bacteriovorus in cryoMNs remains above 80% as found in long-term storage studies, and they successfully impede the growth of gram-negative bacteria in vitro or in a rodent eye infection model. The infection is significantly relieved by nearly six times through 2.5 days of treatment without substantial effects on the cornea thickness and morphology. This approach represents the safe and efficient delivery of new class of antimicrobial armamentarium to otherwise impermeable ocular surface and opens up new avenues for the treatment of ocular surface disorders.


Bdellovibrio bacteriovorus/physiology , Eye Infections/microbiology , Injections, Intraocular/methods , Administration, Topical , Animals , Bdellovibrio bacteriovorus/growth & development , Cornea/anatomy & histology , Cornea/physiology , Disease Models, Animal , Eye Infections/diagnostic imaging , Eye Infections/therapy , Gram-Negative Bacteria/physiology , Injections, Intraocular/instrumentation , Male , Mice , Mice, Inbred C57BL , Needles , Tomography, Optical Coherence
17.
Anal Chem ; 93(29): 10122-10131, 2021 07 27.
Article En | MEDLINE | ID: mdl-34255475

Sentinel lymph node (SLN) detection is of great significance for the prevention and treatment of cancer metastasis. Herein, we introduce silicon nanoparticles (SiNPs)-based exosome (SiNPs@EXO) probes for distinguishing normal and metastatic SLNs. Typically, SiNPs are suitable for stable and long-term tracking of exosomes, while cancer cell-driven exosomes with a tumor-homing effect allow targeting metastatic SLNs. Remarkably, the as-fabricated SiNPs@EXO has the ability to label metastatic SLNs, i.e., the fluorescence signal in SLNs reaches the peak within 0.5 h and remains up to 3 h. Comparatively, SLN tracers (e.g., indocyanine green) used clinically can illuminate SLNs 1 h post injection, whereas the signal witnesses a sharp fall then. Moreover, evaluations based on preclinical data confirm the negligible side effects of the SiNPs@EXO. Our results provide new tools for targeting SLNs and predicting lymphatic metastasis of tumor.


Exosomes , Nanoparticles , Fluorescent Dyes , Humans , Indocyanine Green , Lymphatic Metastasis , Sentinel Lymph Node Biopsy , Silicon
18.
ACS Nano ; 15(6): 9808-9819, 2021 06 22.
Article En | MEDLINE | ID: mdl-34037377

Choroidal neovascularization (CNV) is the leading cause of vision loss in many blinding diseases, but current antiangiogenic therapies with invasively intravitreal injection suffer from poor patient compliance and a rate of devastating ocular complications. Here, we develop an alternative antiangiogenic agent based on hybrid cell-membrane-cloaked nanoparticles for noninvasively targeted treatment of CNV. The retinal endotheliocyte membrane coating provides as-fabricated nanoagents with homotypic targeting capability and binding ability to the vascular endothelial growth factor. The fusion of red blood cell membranes protects the hybrid membrane-coated nanoparticles from phagocytosis by macrophages. In a laser-induced wet age-related macular degeneration mouse model, a significantly enhanced accumulation is observed in CNV regions after intravenous delivery of the hybrid membrane-coated nanoparticles. Moreover, an excellent therapeutic efficacy is achieved in reducing the leakage and area of CNV. Overall, the biomimetic antiangiogenic nanoagents provide an effective approach for noninvasive treatment of CNV.


Choroidal Neovascularization , Nanoparticles , Animals , Biomimetics , Cell Membrane , Choroidal Neovascularization/drug therapy , Disease Models, Animal , Hybrid Cells , Mice , Mice, Inbred C57BL , Vascular Endothelial Growth Factor A
19.
Nat Biomed Eng ; 5(9): 1008-1018, 2021 09.
Article En | MEDLINE | ID: mdl-33941895

Cell therapies for the treatment of skin disorders could benefit from simple, safe and efficient technology for the transdermal delivery of therapeutic cells. Conventional cell delivery by hypodermic-needle injection is associated with poor patient compliance, requires trained personnel, generates waste and has non-negligible risks of injury and infection. Here, we report the design and proof-of-concept application of cryogenic microneedle patches for the transdermal delivery of living cells. The microneedles are fabricated by stepwise cryogenic micromoulding of cryogenic medium with pre-suspended cells, and can be easily inserted into porcine skin and dissolve after deployment of the cells. In mice, cells delivered by the cryomicroneedles retained their viability and proliferative capability. In mice with subcutaneous melanoma tumours, the delivery of ovalbumin-pulsed dendritic cells via the cryomicroneedles elicited higher antigen-specific immune responses and led to slower tumour growth than intravenous and subcutaneous injections of the cells. Biocompatible cryomicroneedles may facilitate minimally invasive cell delivery for a range of cell therapies.


Drug Delivery Systems , Needles , Administration, Cutaneous , Animals , Antigens , Injections, Subcutaneous , Mice , Swine
20.
Angew Chem Int Ed Engl ; 60(28): 15490-15496, 2021 Jul 05.
Article En | MEDLINE | ID: mdl-33904244

Fluorescence and phosphorescence are known as two kinds of fundamental optical signals, which have been used for myriad applications. To date, simultaneous activation of stable fluorescence and long-lived room-temperature phosphorescence (RTP) emission in the aqueous phase remains a big challenge. We prepare zinc-doped silica nanospheres (Zn@SiNSs) with fluorescence and RTP properties using a facile hydrothermal synthetic strategy. For the as-prepared Zn@SiNSs, the recombination of electrons and holes in defects and defect-stabilized excitons derived from oxygen vacancy/C=N bonds lead to the production of stable fluorescence and long-lived RTP (emission lasting for ≈9 s, quantum yield (QY): ≈33.6 %, RTP lifetime: ≈236 ms). The internal Si-O bonded networks and hydrophilic surface in Zn@SiNSs can reduce nonradiative decay to form self-protective RTP, and also provide high water solubility, excellent pH- and photostability.

...