Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 321
1.
PLoS Pathog ; 20(5): e1012209, 2024 May.
Article En | MEDLINE | ID: mdl-38709723

[This corrects the article DOI: 10.1371/journal.ppat.1003231.].

2.
J Agric Food Chem ; 2024 May 18.
Article En | MEDLINE | ID: mdl-38761152

Taurine (Tau) is a semiessential amino acid in mammals with preventive and therapeutic effects on several intestinal disorders. However, the exact function of taurine in ulcerative colitis (UC) is still largely unclear. In this study, we used two taurine-deficient mouse models (CSAD-/- and TauT-/- mice) to explore the influence of taurine on the progression of UC in both dextran sulfate sodium (DSS)-induced colitis and LPS-stimulated Caco-2 cells. We found that cysteine sulfinic acid decarboxylase (CSAD) and taurine transporter (TauT) expressions and taurine levels were markedly reduced in colonic tissues of mice treated with DSS. The CSAD and TauT knockouts exacerbated DSS-induced clinical symptoms and pathological damage and aggravated the intestinal barrier dysfunction and the colonic mucosal inflammatory response. Conversely, taurine pretreatment enhanced the intestinal barrier functions by increasing goblet cells and upregulating tight junction protein expression. Importantly, taurine bound with TLR4 and inhibited the TLR4/NF-κB pathway, ultimately reducing proinflammatory factors (TNF-α and IL-6) and oxidative stress. Our findings highlight the essential role of taurine in maintaining the intestinal barrier integrity and inhibiting intestinal inflammation, indicating that taurine is a promising supplement for colitis treatment.

3.
Head Face Med ; 20(1): 31, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745246

BACKGROUND: In this study, we sought to quantify the influence of vertical control assisted by a temporary anchorage device (TAD) on orthodontic treatment efficacy for skeletal class II patients with a hyperdivergent facial type and probe into the critical factors of profile improvement. METHODS: A total of 36 adult patients with skeletal class II and a hyperdivergent facial type were included in this retrospective case-control study. To exclude the effect of sagittal anchorage reinforcement, the patients were divided into two groups: a maxillary maximum anchorage (MMA) group (N = 17), in which TADs were only used to help with anterior tooth retraction, and the MMA with vertical control (MMA + VC) group (N = 19), for which TADs were also used to intrude the maxillary molars and incisors. The treatment outcome was evaluated using dental, skeletal, and soft-tissue-related parameters via a cephalometric analysis and cast superimposition. RESULTS: A significant decrease in ANB (P < 0.05 for both groups), the retraction and uprighting of the maxillary and mandibular incisors, and the retraction of protruded upper and lower lips were observed in both groups. Moreover, a significant intrusion of the maxillary molars was observed via the cephalometric analysis (- 1.56 ± 1.52 mm, P < 0.05) and cast superimposition (- 2.25 ± 1.03 mm, P < 0.05) of the MMA + VC group but not the MMA group, which resulted in a remarkable decrease in the mandibular plane angle (- 1.82 ± 1.38°, P < 0.05). The Z angle (15.25 ± 5.30°, P < 0.05) and Chin thickness (- 0.97 ± 0.45°, P < 0.05) also improved dramatically in the MMA + VC group, indicating a better profile and a relaxed mentalis. Multivariate regression showed that the improvement in the soft tissue was closely related to the counterclockwise rotation of the mandible plane (P < 0.05). CONCLUSIONS: TAD-assisted vertical control can achieve intrusion of approximately 2 mm for the upper first molars and induce mandibular counterclockwise rotation of approximately 1.8°. Moreover, it is especially important for patients without sufficient retraction of the upper incisors or a satisfactory chin shape.


Cephalometry , Malocclusion, Angle Class II , Humans , Malocclusion, Angle Class II/therapy , Malocclusion, Angle Class II/diagnostic imaging , Female , Male , Retrospective Studies , Adult , Case-Control Studies , Young Adult , Treatment Outcome , Orthodontic Anchorage Procedures/methods , Orthodontic Anchorage Procedures/instrumentation , Orthodontics, Corrective/methods , Tooth Movement Techniques/methods , Vertical Dimension , Adolescent
4.
Nat Commun ; 15(1): 4176, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755176

SETD3 is an essential host factor for the replication of a variety of enteroviruses that specifically interacts with viral protease 2A. However, the interaction between SETD3 and the 2A protease has not been fully characterized. Here, we use X-ray crystallography and cryo-electron microscopy to determine the structures of SETD3 complexed with the 2A protease of EV71 to 3.5 Å and 3.1 Å resolution, respectively. We find that the 2A protease occupies the V-shaped central cleft of SETD3 through two discrete sites. The relative positions of the two proteins vary in the crystal and cryo-EM structures, showing dynamic binding. A biolayer interferometry assay shows that the EV71 2A protease outcompetes actin for SETD3 binding. We identify key 2A residues involved in SETD3 binding and demonstrate that 2A's ability to bind SETD3 correlates with EV71 production in cells. Coimmunoprecipitation experiments in EV71 infected and 2A expressing cells indicate that 2A interferes with the SETD3-actin complex, and the disruption of this complex reduces enterovirus replication. Together, these results reveal the molecular mechanism underlying the interplay between SETD3, actin, and viral 2A during virus replication.


Actins , Cryoelectron Microscopy , Enterovirus A, Human , Protein Binding , Humans , Actins/metabolism , Enterovirus A, Human/genetics , Enterovirus A, Human/metabolism , Crystallography, X-Ray , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/chemistry , Virus Replication , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Enterovirus Infections/virology , Enterovirus Infections/metabolism , Models, Molecular , Histone Methyltransferases
5.
Front Microbiol ; 15: 1352586, 2024.
Article En | MEDLINE | ID: mdl-38596375

Introduction: Melatonin (MEL) is a crucial neuroendocrine hormone primarily produced by the pineal gland. Pinealectomy (PINX) has been performed on an endogenous MEL deficiency model to investigate the functions of pineal MEL and its relationship with various diseases. However, the effect of PINX on the gastrointestinal tract (GIT) MEL levels and gut microbiome in pigs has not been previously reported. Methods: By using a newly established pig PINX model, we detected the levels of MEL in the GIT by liquid chromatography-tandem mass spectrometry. In addition, we examined the effects of PINX on the expression of MEL synthesis enzymes, intestinal histomorphology, and the intestinal barrier. Furthermore, 16S rRNA sequencing was performed to analyze the colonic microbiome. Results: PINX reduced serum MEL levels but did not affect GIT MEL levels. Conversely, MEL supplementation increased MEL levels in the GIT and intestinal contents. Neither PINX nor MEL supplementation had any effect on weight gain, organ coefficient, serum biochemical indexes, or MEL synthetase arylalkylamine N-acetyltransferase (AANAT) expression in the duodenum, ileum, and colon. Furthermore, no significant differences were observed in the intestinal morphology or intestinal mucosal barrier function due to the treatments. Additionally, 16S rRNA sequencing revealed that PINX had no significant impact on the composition of the intestinal microbiota. Nevertheless, MEL supplementation decreased the abundance of Fibrobacterota and increased the abundance of Actinobacteriota, Desulfobacterota, and Chloroflexi. Conclusion: We demonstrated that synthesis of MEL in the GIT is independent of the pineal gland. PINX had no influence on intestinal MEL level and microbiota composition in pigs, while exogenous MEL alters the structure of the gut microbiota.

6.
BMC Nurs ; 23(1): 221, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561710

BACKGROUND: The outbreak of Corona Virus Disease (COVID-19) in 2019 has continued until now, posing a huge threat to the public's physical and mental health, resulting in different degrees of mental health problems. As a vulnerable segment of the public, anxiety is one of the most common mental health problems among COVID-19 patients. Excessive anxiety aggravates the physical and psychological symptoms of COVID-19 patients, which is detrimental to their treatment and recovery, increases financial expenditure, affects family relations, and adds to the medical burden. OBJECTIVE: This study aimed to explore the role of psychological capital and self-esteem in the relationship between insomnia and anxiety, thereby shedding light on the mechanism of the effect of insomnia on anxiety in COVID-19 patients. METHODS: A cross-sectional study was conducted from April to May 2022 in Fangcang hospital in Shanghai, China. The self-administered questionnaires were distributed to 718 COVID-19 patients via cell phone using the Internet platform "Questionnaire Star", which included Athens Insomnia Scale, Psychological Capital Questionnaire, Self-esteem Scale, Self-Rating Anxiety Scale, gender, age, marital status, education. Data analysis was performed using descriptive analysis, independent-samples t-test, one-way analysis of variance, Pearson correlation analysis, ordinary least-squares regression, and bootstrap method. RESULTS: Education background had significant impact on anxiety in COVID-19 patients (F = 7.70, P < 0.001). Insomnia, psychological capital, self-esteem and anxiety were significantly correlated, respectively (P < 0.001). And Regression analysis showed that insomnia had a direct negative predictive effect on psychological capital (ß = -0.70, P < 0.001) and self-esteem (ß = -0.13, P < 0.001). Psychological capital had a direct positive predictive effect on self-esteem (ß = 0.12, P < 0.001). Insomnia had a direct positive predictive effect on anxiety (ß = 0.61, P < 0.001). Both psychological capital and self-esteem had significant negative predictive effects on anxiety (ß = -0.06, P < 0.05; ß = -0.72, P < 0.001). The results showed that the mediating effect of psychological capital and self-esteem was significant, and the mediating effect value was 0.21. First, the indirect effect consisting of insomnia - psychological capital - anxiety was 0.04, showing that psychological capital had a significant mediating effect. Second, the indirect effect consisting of insomnia-self-esteem-anxiety had a value of 0.10, indicating that self-esteem had a significant mediating effect. Third, the indirect effect consisting of insomnia-psychological capital-self-esteem-anxiety had a value of 0.06, suggesting that psychological capital and self-esteem had a significant chain mediating effect between insomnia and anxiety. CONCLUSIONS: Insomnia had a significant positive predictive effect on anxiety. Insomnia was first associated with a decrease in psychological capital, followed by a sequential decrease in self-esteem, which in turn was associated with increased anxiety symptoms in COVID-19 patients. Therefore, focusing on improving the psychological capital and self-esteem of patients can help alleviate the anxiety caused by insomnia in COVID-19 patients. It is recommended that patients and health care professionals increase the psychological capital and Self-esteem of COVID-19 patients through various methods to counter the effects of insomnia on anxiety.

7.
ACS Appl Mater Interfaces ; 16(17): 22580-22592, 2024 May 01.
Article En | MEDLINE | ID: mdl-38634565

The application of high-performance rubber nanocomposites has attracted wide attention, but its development is limited by the imbalance of interface and network effects caused by fillers. Herein, an ultrastrong polymer nanocomposite is successfully designed by introducing a superhydrophobic and mesoporous silica aerogel (HSA) as the filler to poly(methyl vinyl phenyl) siloxane (PVMQ), which increased the PVMQ elongation at break (∼690.1%) by ∼9.3 times and the strength at break (∼6.6 MPa) by ∼24.3 times. Furthermore, HSA/PVMQ with a high dynamic storage modulus (G'0) of ∼12.2 MPa and high Payne effect (ΔG') of ∼9.4 MPa is simultaneously achieved, which is equivalent to 2-3 times that of commercial fumed silica reinforced PVMQ. The superior performance is attributed to the filler-rubber interfacial interaction and the robust filler-rubber entanglement network which is observed by scanning electron microscopy. When the HSA-PVMQ entanglement network is subjected to external stress, both the HSA and bound-PVMQ chains are synergistically involved in resisting structural evolution, resulting in the maximized energy dissipation and deformation resistance through the desorption of the polymer chain and the slip/interpenetrating of the exchange hydrogen bond pairs. Hence, highly aggregated nanoporous silica aerogels may soon be widely used in the application of reinforced silicone rubber or other polymers shortly.

8.
Anal Methods ; 16(10): 1489-1495, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38369952

High fluorescence background poses a substantial challenge to surface-enhanced Raman scattering (SERS), thereby limiting its broader applicability across diverse domains. In this work, silver nanoparticle (Ag NP)-loaded graphene oxide aerogel nanomaterials (GO-Ag ANM) were prepared for sensitive SERS detection of fluorescent explosive 2,4,8,10-tetranitrobenzo-1,3a,6,6a-tetraazapentaenopyridine (BPTAP) by a fluorescence quenching strategy. By harnessing the fluorescence quenching properties of graphene and the localized surface plasmon resonance of silver nanoparticles, the synthesized aerogels exhibited effective fluorescence quenching and Raman enhancement capabilities when employed for BPTAP analysis with 532 nm laser excitation. Significantly, precise control over the loading quantity of silver nanoparticles (Ag NPs) resulted in the remarkable sensitivity of the surface-enhanced Raman scattering (SERS) effect. This method allowed for the detection of fluorescent explosive BPTAP at an extraordinarily low concentration of 1 × 10-7 M. Furthermore, the approach also demonstrated excellent detection capabilities for the dyes R6G, CV, and RhB. This study offers valuable insights for the sensitive detection of fluorescent molecules.

9.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38338657

Sensitization to HLA can result in allograft loss for kidney transplantation (KT) patients. Therefore, it is required to develop an appropriate desensitization (DSZ) technique to remove HLA-donor-specific anti-HLA antibody (DSA) before KT. The aim of this research was to investigate whether combined use of the IL-6 receptor-blocking antibody, tocilizumab (TCZ), and bone-marrow-derived mesenchymal stem cells (BM-MSCs) could attenuate humoral immune responses in an allo-sensitized mouse model developed using HLA.A2 transgenic mice. Wild-type C57BL/6 mice were sensitized with skin allografts from C57BL/6-Tg (HLA-A2.1)1Enge/J mice and treated with TCZ, BM-MSC, or both TCZ and BM-MSC. We compared HLA.A2-specific IgG levels and subsets of T cells and B cells using flow cytometry among groups. HLA.A2-specific IgG level was decreased in all treated groups in comparison with that in the allo-sensitized control (Allo-CONT) group. Its decrease was the most significant in the TCZ + BM-MSC group. Regarding the B cell subset, combined use of TCZ and BM-MSC increased proportions of pre-pro B cells but decreased proportions of mature B cells in BM (p < 0.05 vs. control). In the spleen, an increase in transitional memory was observed with a significant decrease in marginal, follicular, and long-lived plasma B cells (p < 0.05 vs. control) in the TCZ + BM-MSC group. In T cell subsets, Th2 and Th17 cells were significantly decreased, but Treg cells were significantly increased in the TCZ+BM-MSC group compared to those in the Allo-CONT group in the spleen. Regarding RNA levels, IL-10 and Foxp3 showed increased expression, whereas IL-23 and IFN-γ showed decreased expression in the TCZ + BM-MSC group. In conclusion, combined use of TCZ and BM-MSC can inhibit B cell maturation and up-regulate Treg cells, finally resulting in the reduction of HLA.A2-specific IgG in a highly sensitized mouse model. This study suggests that the combined use of TCZ and BM-MSC can be proposed as a novel strategy in a desensitization protocol for highly sensitized patients.


Antibodies, Monoclonal, Humanized , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mice , Animals , Mice, Inbred C57BL , B-Lymphocytes , Mice, Transgenic , HLA-A2 Antigen/genetics , HLA Antigens/metabolism , Immunoglobulin G/metabolism , Mesenchymal Stem Cells/metabolism
10.
Elife ; 122024 Jan 25.
Article En | MEDLINE | ID: mdl-38271475

Spermatogonial stem cells (SSCs) are essential for continuous spermatogenesis and male fertility. The underlying mechanisms of alternative splicing (AS) in mouse SSCs are still largely unclear. We demonstrated that SRSF1 is essential for gene expression and splicing in mouse SSCs. Crosslinking immunoprecipitation and sequencing data revealed that spermatogonia-related genes (e.g. Plzf, Id4, Setdb1, Stra8, Tial1/Tiar, Bcas2, Ddx5, Srsf10, Uhrf1, and Bud31) were bound by SRSF1 in the mouse testes. Specific deletion of Srsf1 in mouse germ cells impairs homing of precursor SSCs leading to male infertility. Whole-mount staining data showed the absence of germ cells in the testes of adult conditional knockout (cKO) mice, which indicates Sertoli cell-only syndrome in cKO mice. The expression of spermatogonia-related genes (e.g. Gfra1, Pou5f1, Plzf, Dnd1, Stra8, and Taf4b) was significantly reduced in the testes of cKO mice. Moreover, multiomics analysis suggests that SRSF1 may affect survival of spermatogonia by directly binding and regulating Tial1/Tiar expression through AS. In addition, immunoprecipitation mass spectrometry and co-immunoprecipitation data showed that SRSF1 interacts with RNA splicing-related proteins (e.g. SART1, RBM15, and SRSF10). Collectively, our data reveal the critical role of SRSF1 in spermatogonia survival, which may provide a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying homing of precursor SSCs.


Spermatogonia , Testis , Animals , Male , Mice , Cell Cycle Proteins/metabolism , Neoplasm Proteins/metabolism , Repressor Proteins/metabolism , RNA Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Spermatogenesis/genetics , Spermatogonia/metabolism , Stem Cells/metabolism , Testis/metabolism
11.
Biol Reprod ; 110(2): 246-260, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-37944068

Uterine glands and their secretions are crucial for conceptus survival and implantation in rodents and humans. In mice, the development of uterine gland known as adenogenesis occurs after birth, whereas the adenogenesis in humans initiates from fetal life and completed at puberty. Uterine adenogenesis involves dynamic epithelial cell proliferation, differentiation, and apoptosis. However, it is largely unexplored about the mechanisms governing adenogenesis. CK1α plays important roles in regulating cell division, differentiation, and death, but it is unknown whether CK1α affects adenogenesis. In the current study, uterus-specific CK1α knockout female mice (Csnk1a1d/d) were infertile resulted from lack of uterine glands. Subsequent analysis revealed that CK1α deletion induced massive apoptosis in uterine epithelium by activating GSK3ß, which was confirmed by injections of GSK3ß inhibitor SB216763 to Csnk1a1d/d females, and the co-treatment of SB216763 and CK1 inhibitor d4476 on cultured epithelial cells. Another important finding was that our results revealed CK1α deficiency activated p53, which then blocked the expression of Foxa2, an important factor for glandular epithelium development and function. This was confirmed by that Foxa2 expression level was elevated in p53 inhibitor pifithrin-α injected Csnk1a1d/d mouse uterus and in vitro dual-luciferase reporter assay between p53 and Foxa2. Collectively, these studies reveal that CK1α is a novel factor regulating uterine adenogenesis by inhibiting epithelial cell apoptosis through GSK3ß pathway and regulating Foxa2 expression through p53 pathway. Uncovering the mechanisms of uterine adenogenesis is expected to improve pregnancy success in humans and other mammals.


Indoles , Maleimides , Tumor Suppressor Protein p53 , Uterus , Pregnancy , Animals , Female , Mice , Humans , Glycogen Synthase Kinase 3 beta/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Uterus/metabolism , Apoptosis , Epithelial Cells/metabolism , Mice, Knockout , Mammals/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism
12.
Nature ; 625(7996): 822-831, 2024 Jan.
Article En | MEDLINE | ID: mdl-37783228

Argonaute (Ago) proteins mediate RNA- or DNA-guided inhibition of nucleic acids1,2. Although the mechanisms used by eukaryotic Ago proteins and long prokaryotic Ago proteins (pAgos) are known, that used by short pAgos remains elusive. Here we determined the cryo-electron microscopy structures of a short pAgo and the associated TIR-APAZ proteins (SPARTA) from Crenotalea thermophila (Crt): a free-state Crt-SPARTA; a guide RNA-target DNA-loaded Crt-SPARTA; two Crt-SPARTA dimers with distinct TIR organization; and a Crt-SPARTA tetramer. These structures reveal that Crt-SPARTA is composed of a bilobal-fold Ago lobe that connects with a TIR lobe. Whereas the Crt-Ago contains a MID and a PIWI domain, Crt-TIR-APAZ has a TIR domain, an N-like domain, a linker domain and a trigger domain. The bound RNA-DNA duplex adopts a B-form conformation that is recognized by base-specific contacts. Nucleic acid binding causes conformational changes because the trigger domain acts as a 'roadblock' that prevents the guide RNA 5' ends and the target DNA 3' ends from reaching their canonical pockets; this disorders the MID domain and promotes Crt-SPARTA dimerization. Two RNA-DNA-loaded Crt-SPARTA dimers form a tetramer through their TIR domains. Four Crt-TIR domains assemble into two parallel head-to-tail-organized TIR dimers, indicating an NADase-active conformation, which is supported by our mutagenesis study. Our results reveal the structural basis of short-pAgo-mediated defence against invading nucleic acids, and provide insights for optimizing the detection of SPARTA-based programmable DNA sequences.


Argonaute Proteins , Cryoelectron Microscopy , NAD+ Nucleosidase , Nucleic Acids , Argonaute Proteins/chemistry , Argonaute Proteins/metabolism , Argonaute Proteins/ultrastructure , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA/ultrastructure , Enzyme Activation , NAD+ Nucleosidase/chemistry , NAD+ Nucleosidase/genetics , NAD+ Nucleosidase/metabolism , NAD+ Nucleosidase/ultrastructure , Nucleic Acid Conformation , Nucleic Acids/metabolism , Protein Conformation , RNA, Guide, CRISPR-Cas Systems , Mutagenesis
13.
Kidney Res Clin Pract ; 43(2): 236-249, 2024 Mar.
Article En | MEDLINE | ID: mdl-37448282

BACKGROUND: Multiple risk factors are involved in new-onset diabetes mellitus (DM) after organ transplantation; however, their ability to predict clinical prognosis remains unclear. Therefore, we investigated whether patient-specific induced pluripotent stem cells (iPSCs) could help predict DM development before performing kidney transplantation (KT). METHODS: We first performed whole transcriptome and functional enrichment analyses of KT patient-derived iPSCs. Our results revealed that insulin resistance, type 2 DM, and transforming growth factor beta signaling pathways are associated between the groups of DM and non-DM. We next determined whether the genetic background was associated with development of iPSCs into pancreatic progenitor (PP) cells. RESULTS: The levels of differentiation-related key markers of PP cells were significantly lower in the DM group than in the non-DM group. Moreover, the results of tacrolimus toxicity screening showed a significant decrease in the number of PP cells of the DM group compared with the non-DM group, suggesting that these cells are more susceptible to tacrolimus toxicity. CONCLUSION: Taken together, these results indicate that PP cells of the DM group showed low developmental potency accompanied by a significantly different genetic background compared with the non-DM group. Thus, genetic analysis can be used to predict the risk of DM before KT.

14.
Reprod Sci ; 31(1): 248-259, 2024 Jan.
Article En | MEDLINE | ID: mdl-37644378

Prostaglandin F2α (PGF2α) is a luteolytic hormone that promotes parturition in mammals at the end of pregnancy by reducing progesterone secretion from the corpus luteum (CL). In rodents and primates, PGF2α rapidly converts progesterone to 20α-hydroxyprogesterone (20α-OHP) by promoting 20α-hydroxysteroid dehydrogenase (20α-HSD) expression. However, the specific mechanism of 20α-HSD regulation by PGF2α remains unclear. Casein Kinase 1α (CK1α) is a CK1 family member that regulates a variety of physiological functions, including reproductive development. Here, we investigated the effects of CK1α on pregnancy in female mice. Our experiments showed that CK1α is expressed in mouse CL, and its inhibition enhanced progesterone metabolism, decreased progesterone levels, and affected mouse embryo implantation. Further, CK1α mediated the effect of PGF2α on 20α-HSD in mouse luteal cells in vitro. Our results are the first to show that CK1α affects the 20α-HSD mRNA level by affecting the ERK signalling pathway to regulate the expression of the transcription factor SP1. These findings improve our understanding of PGF2α regulation of 20α-HSD.


Dinoprost , Progesterone , Pregnancy , Mice , Female , Animals , Progesterone/pharmacology , Progesterone/metabolism , Dinoprost/pharmacology , 20-Hydroxysteroid Dehydrogenases/genetics , 20-Hydroxysteroid Dehydrogenases/metabolism , Corpus Luteum/metabolism , Parturition , Mammals/metabolism
15.
In Vitro Cell Dev Biol Anim ; 60(1): 23-35, 2024 Jan.
Article En | MEDLINE | ID: mdl-38117455

It has been well established that the circulating taurine affects the insulin synthesis in pancreatic islet ß-cells, whereas miR-7a and LIM-homeodomain transcription factor Isl-1 are important intracellular factors regulating insulin transcription and synthesis. However, it still remains unknown whether taurine regulates insulin synthesis by affecting miR-7a and/or Isl-1 expressions in mouse pancreatic islet ß-cells. The present study was thus proposed to identify the effects of taurine on the expressions of miR-7a and/or Isl-1 and their relations to insulin synthesis in mouse pancreatic islet ß-cells by using miR-7a2 knockout (KO) and taurine transporter (TauT) KO mouse models and the related in vitro experiments. The results demonstrated that taurine supplement significantly decreased the pancreas miR-7a expression, but sharply upregulated the pancreas Isl-1 and insulin expressions, and serum insulin levels. However, the enhanced effects of taurine on Isl-1 expression and insulin synthesis were mitigated in the TauT KO and miR-7a2 KO mice. In addition, our results confirmed that taurine markedly increased pancreas RAF1 and ERK1/2 expressions. Collectively, the present study firstly demonstrates that taurine regulates insulin synthesis through TauT/miR-7a/RAF1/ERK1/2/Isl-1 signaling pathway, which are crucial for our understanding the mechanisms of taurine affecting insulin synthesis, and also potential for establishing the therapeutic strategies for diabetes and the diseases related to metabolism.


Insulin-Secreting Cells , MicroRNAs , Animals , Mice , Insulin/metabolism , Insulin-Secreting Cells/metabolism , MAP Kinase Signaling System , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Taurine/pharmacology , Taurine/metabolism
16.
Small ; : e2307243, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38054802

The high cost of noble Pd/Pt required for the oxygen reduction reaction (ORR) in the cathode restricts the wide applications of fuel cells. In this study, the synthesis of a novel Pd3 CuFe0.5 aerogel electrocatalyst is successfully demonstrated using self-assembly and lyophilization techniques, employing a mild reducing agent. The resulting aerogel electrocatalyst exhibits a distinctive 3D network structure, possessing a substantial BET-specific surface area of 75.19 m2  g-1 . It is worth noting that the optimized Pd3 CuFe0.5 aerogel demonstrates exceptional ORR performance with a high half-wave potential of 0.92 V versus RHE, a significant limiting current density of 7.6 mA cm-2 , and the excellent electrocatalytic stability, superior to the reported noble metal electrocatalysts, with the ORR activity decays only 4.9% after 16 000 s. In addition, the Pd3 CuFe0.5 aerogel electrocatalyst shows superior cycling stability for ≈120 h at a charge/discharge current density of 10 mA cm-2 , indicating its promising application in fuel cells. Furthermore, the resulting composite aerogel possesses excellent hydrogen evolution reaction and ethanol oxidation reaction activity. The density functional theory calculations show that the partial oxidation of Pd3 CuFe0.5 aerogel leads to a negative shift of the d-band center, which energetically optimizes the binding strength of *O intermediates, therefore accelerating the ORR activity.

17.
Gels ; 9(10)2023 Oct 23.
Article En | MEDLINE | ID: mdl-37888412

Aerogels emerge as captivating contenders within the realm of high-temperature thermal resistance and thermal insulation. Nevertheless, their practical applications are usually constrained by their inherent brittleness when subjected to rigorous conditions. Herein, employing hafnium dichloride oxide octahydrate (HfOCl2·8H2O) as the hafnium source and resorcinol-formaldehyde (RF) as the carbon precursor, hafnium carbide (HfC) aerogels are fabricated via the sol-gel method complemented with carbothermal reduction reaction. Investigations are conducted into the effects of various molar ratios, duration, and temperatures of calcination on the microstructural features and physico-chemical characteristics of the as-prepared HfC aerogel. The aerogel shows a high BET-specific surface area (601.02 m2/g), which is much larger than those of previously reported aerogels. Furthermore, the HfC aerogel exhibits a low thermal conductivity of 0.053 W/(m·K) and a compressive strength of up to 6.12 MPa after carbothermal reduction at 1500 °C. These excellent thermal insulation and mechanical properties ensure it is ideal for the utilization of high-temperature thermal resistance and thermal insulation in the fields of aerospace.

18.
ACS Omega ; 8(39): 36302-36310, 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37810707

Cannabis is the most prevalent abused substance after alcohol, and its consumption severely harms human health and thus adversely impacts society. The identification and quantification of cannabis in urine play important roles in practical forensics. Excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor (PARAFAC) analysis was developed to identify and quantify the four main ingredients of cannabis in urine samples. The main ingredients of cannabis including Δ-9-tetrahydrocannabinol (THC), cannabidiol, cannabinol, and tetrahydrocannabinolic acid (THC-COOH) exhibited diverse fluorescence characteristics, and the concentrations of these compounds depicted a positive linear relationship with the fluorescence intensity at the ng/mL level. The EEM/PARAFAC method adequately characterized and discriminated the four ingredients in calibration and prediction samples with a low root-mean-square error of prediction (RMSEP; 0.03-0.07 µg/mL) and limit of quantitation (LOQ; 0.26-0.71 µg/mL). The prediction results of the EEM/PARAFAC method well correlated with that of GC-MS with a low RMSEP range (0.01-0.05 µg/mL) and LOQ range (0.07-0.44 µg/mL) in urine samples. The EEM spectroscopic investigation coupled with the PARAFAC algorithm results in an organic, solvent-less, fast, reliable tool to perform accurate and rapid screening of cannabis abusers.

19.
Yi Chuan ; 45(10): 922-932, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37872114

This study aimed to assess and compare the performance of different machine learning models in predicting selected pig growth traits and genomic estimated breeding values (GEBV) using automated machine learning, with the goal of optimizing whole-genome evaluation methods in pig breeding. The research employed genomic information, pedigree matrices, fixed effects, and phenotype data from 9968 pigs across multiple companies to derive four optimal machine learning models: deep learning (DL), random forest (RF), gradient boosting machine (GBM), and extreme gradient boosting (XGB). Through 10-fold cross-validation, predictions were made for GEBV and phenotypes of pigs reaching weight milestones (100 kg and 115 kg) with adjustments for backfat and days to weight. The findings indicated that machine learning models exhibited higher accuracy in predicting GEBV compared to phenotypic traits. Notably, GBM demonstrated superior GEBV prediction accuracy, with values of 0.683, 0.710, 0.866, and 0.871 for B100, B115, D100, and D115, respectively, slightly outperforming other methods. In phenotype prediction, GBM emerged as the best-performing model for pigs with B100, B115, D100, and D115 traits, achieving prediction accuracies of 0.547, followed by DL at 0.547, and then XGB with accuracies of 0.672 and 0.670. In terms of model training time, RF required the most time, while GBM and DL fell in between, and XGB demonstrated the shortest training time. In summary, machine learning models obtained through automated techniques exhibited higher GEBV prediction accuracy compared to phenotypic traits. GBM emerged as the overall top performer in terms of prediction accuracy and training time efficiency, while XGB demonstrated the ability to train accurate prediction models within a short timeframe. RF, on the other hand, had longer training times and insufficient accuracy, rendering it unsuitable for predicting pig growth traits and GEBV.


Genome , Models, Genetic , Swine/genetics , Animals , Phenotype , Genomics/methods , Genotype , Polymorphism, Single Nucleotide
20.
Endocrinology ; 165(1)2023 Nov 20.
Article En | MEDLINE | ID: mdl-37820033

Insulin secreted by pancreatic ß cells is essential for maintaining blood glucose levels. Diabetes is caused primarily by a loss of ß cells or impairment of ß-cell function. A previous whole-transcriptome analysis of islets from a type 2 diabetes group and a control group showed that a splicing disorder occurred in approximately 25% of splicing events. Breast carcinoma amplified sequence 2 (BCAS2) is a spliceosome component whose function in islet ß cells is unclear. Here, we report that knockdown of Bcas2 decreased glucose- and KCl-stimulated insulin secretion in the NIT-1 cell line. Pancreas weight, glucose tolerance, and insulin sensitivity were measured in normal chow-fed Bcas2 f/f-ßKO mice, and ß-cell mass and islet size were analyzed by immunohistochemistry. Glucose intolerance developed in Bcas2 f/f-ßKO mice, but there were no significant differences in pancreas weight, insulin sensitivity, ß-cell mass, or islet size. Furthermore, observation of glucose-stimulated insulin secretion and insulin secretion granules in normal chow-fed mice revealed that the insulin level in serum and the number of insulin secretion granules were decreased in Bcas2 f/f-ßKO mice. These differences were related to abnormal splicing of Syt7 and Tcf7l2 pre-mRNA. Taken together, these results demonstrate that BCAS2 is involved in alternative splicing during insulin synthesis and secretion.


Diabetes Mellitus, Type 2 , Insulin Resistance , Insulin-Secreting Cells , Islets of Langerhans , Animals , Mice , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/genetics , Alternative Splicing , RNA, Messenger/metabolism , Islets of Langerhans/metabolism , Insulin-Secreting Cells/metabolism , Glucose/pharmacology , Glucose/metabolism , Mice, Knockout , Neoplasm Proteins/genetics
...