Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 7(4)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36546936

RESUMEN

To solve the technical problem that wheeled vehicles are prone to skidding on complex ground, due to poor adhesion performance, a tire-tread-structure design method based on the bionic principle is proposed in this paper. The 3D model of a goat's foot was obtained using reverse engineering technology, and the curve equation was fitted by extracting the contour data of its outer-hoof flap edge, which was applied to the tire-tread-structure design. The bionic and herringbone-pattern rubber samples were manufactured, and a soil-tank test was carried out using an electronic universal tensile-testing machine, in order to verify the simulation results. The results showed that the overall adhesion of the bionic tread-pattern was greater than that of the normal tread-pattern with the same load applied and the same height and angle of the tread-pattern structure, and the maximum adhesion was increased by 14.23%. This research will provide a reference for optimizing the pattern structure and thus improving the passing performance of wheeled vehicles.

2.
Front Plant Sci ; 13: 1030021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330245

RESUMEN

Accurate recognition method of pitaya in natural environment provides technical support for automatic picking. Aiming at the intricate spatial position relationship between pitaya fruits and branches, a pitaya recognition method based on improved YOLOv4 was proposed. GhostNet feature extraction network was used instead of CSPDarkNet53 as the backbone network of YOLOv4. A structure of generating a large number of feature maps through a small amount of calculation was used, and the redundant information in feature layer was obtained with lower computational cost, which can reduce the number of parameters and computation of the model. Coordinate attention was introduced to enhance the extraction of fine-grained feature of targets. An improved combinational convolution module was designed to save computing power and prevent the loss of effective features and improve the recognition accuracy. The Ghost Module was referenced in Yolo Head to improve computing speed and reduce delay. Precision, Recall, F1, AP, detection speed and weight size were selected as performance evaluation indexes of recognition model. 8800 images of pitaya fruit in different environments were used as the dataset, which were randomly divided into the training set, the validation set and the test set according to the ratio of 7:1:2. The research results show that the recognition accuracy of the improved YOLOv4 model for pitaya fruit is 99.23%. Recall, F1 and AP are 95.10%, 98% and 98.94%, respectively. The detection speed is 37.2 frames·s-1, and the weight size is 59.4MB. The improved YOLOv4 recognition algorithm can meet the requirements for the accuracy and the speed of pitaya fruit recognition in natural environment, which will ensure the rapid and accurate operation of the picking robot.

3.
Biomimetics (Basel) ; 7(4)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36412709

RESUMEN

In order to improve the slope movement stability and flexibility of quadruped robot, a theoretical design method of a flexible spine of a robot that was based on bionics was proposed. The kinematic characteristics of the spine were analyzed under different slopes with a Saanen goat as the research object. A Qualisys track manager (QTM) gait analysis system was used to obtain the trunk movement of goats under multiple slopes, and linear time normalization (LTN) was used to calibrate and match typical gait cycles to characterize the goat locomotion gait under slopes. Firstly, the spatial angle changes of cervical thoracic vertebrae, thoracolumbar vertebrae, and lumbar vertebrae were compared and analyzed under 0°, 5°, 10°, and 15° slopes, and it was found that the rigid and flexible coupling structure between the thoraco-lumbar vertebrae played an obvious role when moving on the slope. Moreover, with the increase in slope, the movement of the spine changed to the coupling movement of thoraco-lumbar coordination movement and a flexible swing of lumbar vertebrae. Then, the Gaussian mixture model (GMM) clustering algorithm was used to analyze the changes of the thoraco-lumbar vertebrae and lumbar vertebrae in different directions. Combined with anatomical knowledge, it was found that the motion of the thoraco-lumbar vertebrae and lumbar vertebrae in the goat was mainly manifested as a left-right swing in the coronal plane. Finally, on the basis of the analysis of the maximin and variation range of the thoraco-lumbar vertebrae and lumbar vertebrae in the coronal plane, it was found that the coupling motion of the thoraco-lumbar cooperative motion and flexible swing of the lumbar vertebrae at the slope of 10° had the most significant effect on the motion stability. SSE, R2, adjusted-R2, and RMSE were used as evaluation indexes, and the general equations of the spatial fitting curve of the goat spine were obtained by curve fitting of Matlab software. Finally, Origin software was used to obtain the optimal fitting spatial equations under eight movements of the goat spine with SSE and adjusted-R2 as indexes. The research will provide an idea for the bionic spine design with variable stiffness and multi-direction flexible bending, as well as a theoretical reference for the torso design of a bionic quadruped robot.

4.
Biomimetics (Basel) ; 7(4)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36278717

RESUMEN

The goose's neck is an excellent stabilizing organ with its graceful neck curves and flexible movements. However, the stabilizing mechanism of the goose's neck remains unclear. This study adopts a dynamic in vivo experimental method to obtain continuous and accurate stable motion characteristics of the goose's cervical vertebra. Firstly, the results showed that when the body of a goose was separately moved back and forth along the Y direction (front and back) and Z direction (up and down), the goose's neck can significantly stabilize the head. Then, because of the limitation of the X-ray imaging area, the three-dimensional intervertebral rotational displacements for vertebrae C4-C8 were obtained, and the role that these five segments play in the stabilization of the bird's neck was analyzed. This study reveals that the largest range of the adjacent vertebral rotational movement is around the X-axis, the second is around the Y-axis, and the smallest is around the Z-axis. This kinematic feature is accord with the kinematic feature of the saddle joint, which allows the flexion/around X-axis and lateral bending/around Y-axis, and prevents axial rotation/around Z-axis.

5.
Biomimetics (Basel) ; 7(2)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35735596

RESUMEN

In this paper, reverse engineering technique was employed to extract the ridges of the hoof ball contour, and hoof ball tissue structure was analyzed based on the bionic prototype of goat hooves. The quantified geometric features were used to design the bionic track shoe pattern, which can enhance its adhesive performance and solve the problem that agricultural tracked vehicles in hilly and mountainous areas are prone to slip due to poor adhesive performance. The monolithic structure of the biomimetic goat hoof track shoe pattern and the ordinary one-line track pattern were arranged and combined; they included six kinds of track shoe models and the adhesive performance was compared. A discrete element system was established based on soil parameter determination to compare the maximum adhesion of different track shoe models. The bionic track shoe samples were prepared for soil bin tests to verify the reliability of the discrete element analysis results. Compared with the ordinary track shoe, the adhesion of the optimal bionic track shoe was improved by 9.1%.

6.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA