Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Neurosci ; 17(2): 254-61, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24413699

RESUMEN

µ-opioid receptors (MORs) are necessary for the analgesic and addictive effects of opioids such as morphine, but the MOR-expressing neuronal populations that mediate the distinct opiate effects remain elusive. Here we devised a new conditional bacterial artificial chromosome rescue strategy to show, in mice, that targeted MOR expression in a subpopulation of striatal direct-pathway neurons enriched in the striosome and nucleus accumbens, in an otherwise MOR-null background, restores opiate reward and opiate-induced striatal dopamine release and partially restores motivation to self administer an opiate. However, these mice lack opiate analgesia or withdrawal. We used Cre-mediated deletion of the rescued MOR transgene to establish that expression of the MOR transgene in the striatum, rather than in extrastriatal sites, is needed for the restoration of opiate reward. Our study demonstrates that a subpopulation of striatal direct-pathway neurons is sufficient to support opiate reward-driven behaviors and provides a new intersectional genetic approach to dissecting neurocircuit-specific gene function in vivo.


Asunto(s)
Cuerpo Estriado/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Receptores Opioides mu/metabolismo , Recompensa , Análisis de Varianza , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Encefalinas/genética , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Microdiálisis , Morfina/farmacología , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Narcóticos/farmacología , Neuronas/clasificación , Neuronas/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/genética , Dimensión del Dolor/efectos de los fármacos , Precursores de Proteínas/genética , Receptores Opioides mu/deficiencia , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
3.
Cell ; 135(3): 549-60, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18984165

RESUMEN

We uncovered a role for ERK signaling in GABA release, long-term potentiation (LTP), and learning, and show that disruption of this mechanism accounts for the learning deficits in a mouse model for learning disabilities in neurofibromatosis type I (NF1). Our results demonstrate that neurofibromin modulates ERK/synapsin I-dependent GABA release, which in turn modulates hippocampal LTP and learning. An Nf1 heterozygous null mutation, which results in enhanced ERK and synapsin I phosphorylation, increased GABA release in the hippocampus, and this was reversed by pharmacological downregulation of ERK signaling. Importantly, the learning deficits associated with the Nf1 mutation were rescued by a subthreshold dose of a GABA(A) antagonist. Accordingly, Cre deletions of Nf1 showed that only those deletions involving inhibitory neurons caused hippocampal inhibition, LTP, and learning abnormalities. Importantly, our results also revealed lasting increases in GABA release triggered by learning, indicating that the mechanisms uncovered here are of general importance for learning.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Genes de Neurofibromatosis 1 , Aprendizaje , Potenciación a Largo Plazo , Neurofibromina 1/metabolismo , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Discapacidades para el Aprendizaje/fisiopatología , Masculino , Ratones , Neurofibromatosis 1/fisiopatología , Neurofibromina 1/genética , Fosforilación , Sinapsinas/metabolismo
4.
Nat Neurosci ; 10(11): 1395-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17934457

RESUMEN

Instrumental conditioning allows animals to learn about the consequences of their own actions, but the underpinning molecular mechanisms remain elusive. Here we show that the sphingosine-1-phosphate (S1P) receptor Gpr6 is selectively expressed in the striatopallidal neurons in the striatum. Gpr6-deficient mice showed reduced striatal cyclic AMP production in vitro and selective alterations in instrumental conditioning in vivo. Thus, Gpr6 is the first striatopallidal neuron-specific genetic regulator of instrumental conditioning in a mammal.


Asunto(s)
Condicionamiento Operante/fisiología , Regulación de la Expresión Génica/fisiología , Globo Pálido/citología , Neuronas/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Análisis de Varianza , Animales , Conducta Animal/fisiología , Colforsina/farmacología , AMP Cíclico/metabolismo , Privación de Alimentos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Noqueados , Mutación , Neuronas/efectos de los fármacos , Tiempo de Reacción/genética , Receptores de Lisoesfingolípidos/deficiencia
5.
Curr Biol ; 15(21): 1961-7, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16271875

RESUMEN

Neurofibromatosis Type 1 (NF1) is a common neurological disorder caused by mutations in the gene encoding Neurofibromin, a p21Ras GTPase Activating Protein (GAP). Importantly, NF1 causes learning disabilities and attention deficits. A previous study showed that the learning and memory deficits of a mouse model of NF1 (nf1+/-) appear to be caused by excessive p21Ras activity leading to impairments in long-term potentiation (LTP), a cellular mechanism of learning and memory. Here, we identify lovastatin as a potent inhibitor of p21Ras/Mitogen Activated Protein Kinase (MAPK) activity in the brain. Lovastatin is a specific inhibitor of three-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, used commonly for the treatment of hypercholesterolemia. We report that lovastatin decreased the enhanced brain p21Ras-MAPK activity of the nf1+/- mice, rescued their LTP deficits, and reversed their spatial learning and attention impairments. Therefore, these results demonstrate that lovastatin may prove useful in the treatment of Neurofibromatosis Type 1.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Discapacidades para el Aprendizaje/tratamiento farmacológico , Lovastatina/uso terapéutico , Neurofibromatosis 1/complicaciones , Análisis de Varianza , Animales , Trastorno por Déficit de Atención con Hiperactividad/etiología , Western Blotting , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Discapacidades para el Aprendizaje/etiología , Potenciación a Largo Plazo/efectos de los fármacos , Lovastatina/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Mutantes , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores
6.
J Neurosci ; 25(42): 9721-34, 2005 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16237176

RESUMEN

Molecular and cellular studies of the mechanisms underlying mammalian learning and memory have focused almost exclusively on postsynaptic function. We now reveal an experience-dependent presynaptic mechanism that modulates learning and synaptic plasticity in mice. Consistent with a presynaptic function for endogenous H-ras/extracellular signal-regulated kinase (ERK) signaling, we observed that, under normal physiologic conditions in wild-type mice, hippocampus-dependent learning stimulated the ERK-dependent phosphorylation of synapsin I, and MEK (MAP kinase kinase)/ERK inhibition selectively decreased the frequency of miniature EPSCs. By generating transgenic mice expressing a constitutively active form of H-ras (H-rasG12V), which is abundantly localized in axon terminals, we were able to increase the ERK-dependent phosphorylation of synapsin I. This resulted in several presynaptic changes, including a higher density of docked neurotransmitter vesicles in glutamatergic terminals, an increased frequency of miniature EPSCs, and increased paired-pulse facilitation. In addition, we observed facilitated neurotransmitter release selectively during high-frequency activity with consequent increases in long-term potentiation. Moreover, these mice showed dramatic enhancements in hippocampus-dependent learning. Importantly, deletion of synapsin I, an exclusively presynaptic protein, blocked the enhancements of learning, presynaptic plasticity, and long-term potentiation. Together with previous invertebrate studies, these results demonstrate that presynaptic plasticity represents an important evolutionarily conserved mechanism for modulating learning and memory.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/biosíntesis , Aprendizaje/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Plasticidad Neuronal/fisiología , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Sinapsinas/biosíntesis , Animales , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Terminales Presinápticos/enzimología , Proteínas Proto-Oncogénicas p21(ras)/biosíntesis , Proteínas Proto-Oncogénicas p21(ras)/genética , Sinapsinas/genética
7.
FEBS Lett ; 532(1-2): 177-82, 2002 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-12459485

RESUMEN

Inhibition of ATP-sensitive K(+) (K(ATP)) channels by ATP, a process presumably initiated by binding of ATP to the pore-forming subunit, Kir6.2, is reduced in the presence of phosphoinositides (PPIs). Previous studies led to the hypothesis that PPIs compromise ATP binding. Here, this hypothesis was tested using purified Kir6.2. We show that PPIs bind purified Kir6.2 in an isomer-specific manner, that biotinylated ATP analogs photoaffinity label purified Kir6.2, and that this labeling is weakened in the presence of PPIs. Patch-clamp measurements confirmed that these ATP analogs inhibited Kir6.2 channels, and that PPIs decreased the level of inhibition. These results indicate that interaction of PPIs with Kir6.2 impedes ATP-binding activity. The PPI regulation of ATP binding revealed in this study provides a putative molecular mechanism that is potentially pivotal to the nucleotide sensitivity of K(ATP) channels.


Asunto(s)
Adenosina Trifosfato/metabolismo , Fosfatidilinositoles/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/análogos & derivados , Animales , Células COS , Conductividad Eléctrica , Isomerismo , Técnicas de Placa-Clamp , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Etiquetas de Fotoafinidad/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/aislamiento & purificación , Canales de Potasio de Rectificación Interna/fisiología
8.
J Physiol ; 540(Pt 3): 731-41, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11986364

RESUMEN

Chemical modification can inhibit ion channels either by reacting with pore-lining residues and directly occluding the channel or by closing the channel allosterically. A general method to distinguish between these two mechanisms does not exist. Previously, sulfhydryl (SH) modification has been shown to inhibit ATP-sensitive K(+) (K(ATP)) channels. The crucial modification has been localized to C42 near the N-terminus of Kir6.2, a pore-forming subunit of K(ATP) channels, but little is known about how SH modification of C42 causes channel inhibition. To investigate this mechanism, we used the membrane-impermeable methanethiosulfonates, MTSET and MTS-TEAH, to modify Kir6.2 channels. While intracellular application of MTSET irreversibly inhibited channels, MTS-TEAH failed to do so. Instead, MTS-TEAH treatment prolonged channel openings and prevented the effect of subsequent MTSET treatment. Similar observations were made in mutants in which cysteines other than C42 had been mutated. Neither MTSET nor MTS-TEAH, however, affected mutant channels in which valines were substituted for C42 residues in all subunits. The reagents were effective when two of four C42 residues in the tetramer were replaced by valines. These results can be interpreted as indicating that both reagents modify C42. We then employed spermine, a known inner pore blocker, as a probe to examine whether MTS-TEAH modification alters pore accessibility. We found that spermine block was not changed by MTS-TEAH modification. Based on these data, we postulate that C42 faces either the cytoplasm or a vestibule section wide enough to allow spermine to pass freely after modification by MTS-TEAH. Our study suggests that channel inhibition caused by SH modification of Kir6.2 is an allosteric effect, and is not caused by direct pore blockage.


Asunto(s)
Activación del Canal Iónico/fisiología , Mesilatos/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Reactivos de Sulfhidrilo/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Células COS , Chlorocebus aethiops , Ditiotreitol/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/efectos de los fármacos , Transfección
9.
J Biol Chem ; 277(12): 10523-30, 2002 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-11790775

RESUMEN

Intracellular application of certain charged methanethiosulfonate (MTS) reagents modified and irreversibly inhibited Kir6.2 channels when cysteine substitutions were introduced at positions Ile-210, Ile-211, or Ser-212 within the putative cytoplasmic region. Inhibition depends on the spatial dimensions of the MTS reagents. Reaction of MTS reagents, having head diameters of 7.6-8.2 A, with cysteines introduced at position Ser-212 must occur in more than two subunits of the tetrameric Kir6.2 complex to inhibit channel activity. MTS reagents with head diameters less than 6.6 A modified cysteines without causing channel inhibition. An MTS reagent with a head diameter of approximately 10 A could neither modify nor inhibit the channels. Channel inhibition is interpreted as blockage of the intracellular vestibule by MTS reagents that enter the channel vestibule and react with the cysteine residues at vestibule-lining positions. Data are consistent with the hypothesis that residues Ile-210-Ser-212 line a funnel-shaped vestibule of 20-25 A in diameter, which remains unchanged during channel gating.


Asunto(s)
Citoplasma/metabolismo , Metanosulfonato de Etilo/análogos & derivados , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células COS , Células Cultivadas , Cisteína/química , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Metanosulfonato de Etilo/farmacología , Inmunohistoquímica , Isoleucina/química , Mesilatos/farmacología , Modelos Biológicos , Modelos Químicos , Mutagénesis Sitio-Dirigida , Naftalenosulfonatos/farmacología , Técnicas de Placa-Clamp , Potasio/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Serina/química , Espermina/farmacología , Reactivos de Sulfhidrilo/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA