Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1443, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365791

RESUMEN

Despite their notable unidirectional water transport capabilities, Janus membranes are commonly challenged by the fragility of their chemical coatings and the clogging of open microchannels. Here, an on-demand mode-switching strategy is presented to consider the Janus functionality and mechanical durability separately and implement them by simply stretching and releasing the membrane. The stretching Janus mode facilitates unidirectional liquid flow through the hydrophilic micropores-microgrooves channels (PG channels) fabricated by femtosecond laser. The releasing protection mode is designed for the in-situ closure of the PG channels upon encountering external abrasion and impact. The protection mode imparts the Janus membrane robustness to reserve water unidirectional penetration under harsh conditions, such as 2000 cycles mechanical abrasion, 10 days exposure in air and other rigorous tests (sandpaper abrasion, finger rubbing, sand impact and tape peeling). The underlying mechanism of gridded grooves in protecting and enhancing water flow is unveiled. The Janus membrane serves as a fog collector to demonstrate its unwavering mechanical durability in harsh real-world conditions. The presented design strategy could open up new possibilities of Janus membrane in a multitude of applications ranging from multiphase separation devices to fog harvesting and wearable health-monitoring patches.

2.
Langmuir ; 39(27): 9358-9366, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37378589

RESUMEN

Manipulation of droplets has increasingly garnered global attention, owing to its multifarious potential applications, including microfluidics and medical diagnostic tests. To control the droplet motion, geometry-gradient-based passive transport has emerged as a well-established strategy, which induces a Laplace pressure difference based on the droplet radius differences in confined state and transport droplets with no consumption of external energy, whereas this transportation method has inevitably shown some critical limitations: unidirectionality, uncontrollability, short moving distance, and low velocity. Herein, a magnetocontrollable lubricant-infused microwall array (MLIMA) is designed as a key solution to this issue. In the absence of a magnetic field, droplets can spontaneously travel from the tip toward the root of the structure as a result of the geometry-gradient-induced Laplace pressure difference. When the subject of an external magnetic field, the microwalls bend and overlap sequentially, ultimately resulting in the formation of a continuous slippery meniscus surface. The formed meniscus surface can exert sufficient propulsive force to surmount the Laplace pressure difference of the droplet, thereby effectuating active transport. Through the continuous movement of the microwalls, droplets can be actively transported against the Laplace pressure difference from the root to the tip side of the MLIMA or continue to actively move to the root after finishing the passive self-transport. This work demonstrates passive/active hybrid bidirectional droplet transport capabilities, validates its feasibility in the accurate control of droplet manipulation, and exhibits great potential in chemical microreactions, bioassays, and the medical field.

3.
ACS Nano ; 16(2): 2730-2740, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35156798

RESUMEN

Salvinia's long-term underwater air layer retention ability has inspired researchers to develop artificial microstructures. However, Salvinia has an exquisite combination of a complicated hollow structure and heterogeneous chemical properties, which makes artificial reproduction beyond the capabilities of traditional fabrication techniques. In addition, under extremely low underpressure conditions, the mechanism of retention and restoration of the underwater air layer of Salvinia remains unclear. Herein, by combining the shape memory polymer "top-constrained self-branching (TCSB)" and hydrophilic SiO2 microspheres trapping, four-branch hollow microstructures with heterogeneous chemical properties are fabricated. By applying underpressure, the crucial role of hydrophilic apexes is unveiled in air layer restoration. Through the calculation of the surface energy, the underlying mechanism is well interpreted. This study holds great promise for developing Salvinia-inspired artificial structures and reveals the underlying mechanism of the robust air retention and recovery capability of Salvinia leaves in extreme environments.

4.
ACS Appl Mater Interfaces ; 13(12): 14741-14751, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33723993

RESUMEN

Droplet manipulation is of paramount significance for microfluidics-based biochips, especially for bioanalytical chips. Despite great progresses made on droplet manipulation, the existing bioanalytical methods face challenges in terms of capturing minute doses toward hard-to-obtain samples and analyzing biological samples at low temperatures immediately. To circumvent these limitations, a self-propelled and electric stimuli synergetic droplet manipulator (SES-SDM) was developed by a femtosecond laser microfabrication strategy followed by post-treatment. Combining the inspiration from cactus and Nepenthes pitcher plants, the wedge structure with the microbowl array and silicone oil infusion was endowed cooperatively with the SES-SDM. With the synergy of the ultralow voltage (4.0 V) stimuli, these bioinspired features enable the SES-SDM to transport the droplet spontaneously and controllably, showing the maximum fast motion (15.7 mm/s) and long distance (96.2 mm). Remarkably, the SES-SDM can function at -5 °C without the freezing of the droplets, where the self-propelled motion and electric-responsive pinning can realize the accurate capture and real-time analysis of the microdroplets of the tested samples. More importantly, the SES-SDM can realize real-time diagnosis of excessive heavy metal in water by the cooperation of self-propulsion and electro-brake. This work opens an avenue to design a microsampling (5-20 µL) manipulator toward producing the minute samples for efficient bioanalysis and offers a strategy for microanalysis using the synergistic droplet manipulation.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Micromanipulación/instrumentación , Materiales Biomiméticos/química , Cactaceae/química , Electricidad , Congelación , Movimiento (Física) , Propiedades de Superficie , Agua/química , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA